Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313294680> ?p ?o ?g. }
- W4313294680 abstract "Abstract Introduction Radiofrequency (RF) induced tissue heating around deep brain stimulation (DBS) leads is a well-known safety risk during magnetic resonance imaging (MRI), resulting in strict imaging guidelines and limited allowable protocols. The implanted lead’s trajectory and its orientation with respect to the MRI electric fields contribute to variations in the magnitude of RF heating across patients. Currently, there are no consistent requirements for surgically implanting the extracranial portion of the DBS lead. This produces substantial variations in clinical DBS lead trajectories and hinders RF heating predictions. Recent studies showed that incorporating concentric loops in the extracranial trajectory of the lead can reduce RF heating, but the optimal positioning of the loop remains unknown. In this study, we systematically evaluated the RF heating of 244 unique lead trajectories to elucidate the characteristics of the trajectory that minimize RF heating during MRI at 3 T. We also presented the first surgical implementation of these modified trajectories and compared their RF heating to the RF heating of unmodified trajectories. Methods We performed phantom experiments to assess the maximum temperature increase, ΔT max , of 244 unique lead trajectories. We systematically interrogated the effect of three characteristics related to the extracranial portion of the lead trajectory, namely, the number of concentric loops, the size of the loops, and the position of the loops on the skull. Experiments were performed in an anthropomorphic phantom implanted with a commercial DBS system, and RF exposure was generated by applying a high-SAR sequence (T1-weighted turbo spin echo dark fluid pulse sequence, B 1 + rms = 2.7 μT). Test-retest experiments were conducted to assess the reliability of measurements. Additionally, we determined the effect of imaging landmark and perturbations to the DBS device configuration on the efficacy of low-heating lead trajectories. Finally, recommended modified trajectories were implanted in patients by two neurosurgeons and their RF heating was characterized in comparison with non-modified trajectories. Results Our search protocol elicited lead trajectories with ΔT max from 0.09 – 7.34 °C. Interestingly, increasing the number of loops and positioning them near the surgical burr hole—especially for the contralateral lead—substantially reduced RF heating. Trajectory specifications based on the results from the phantom experiments were easily adopted during the surgical procedure and generated nearly a 4-fold reduction in RF heating. Discussion/Conclusion Surgically modifying the extracranial portion of the DBS lead trajectory can substantially mitigate RF heating during MRI at 3 T. Simple adjustments to the lead’s configuration can be readily adopted during DBS lead implantation by implementing small concentric loops near the surgical burr hole." @default.
- W4313294680 created "2023-01-06" @default.
- W4313294680 creator A5029140435 @default.
- W4313294680 creator A5035881704 @default.
- W4313294680 creator A5042878661 @default.
- W4313294680 creator A5062500213 @default.
- W4313294680 creator A5067065819 @default.
- W4313294680 date "2022-12-27" @default.
- W4313294680 modified "2023-09-27" @default.
- W4313294680 title "Surgical modification of deep brain stimulation lead trajectories substantially reduces RF heating during MRI at 3 T: From phantom experiments to clinical applications" @default.
- W4313294680 cites W1671872203 @default.
- W4313294680 cites W1832894694 @default.
- W4313294680 cites W1970416621 @default.
- W4313294680 cites W1980777740 @default.
- W4313294680 cites W1987021216 @default.
- W4313294680 cites W2011315637 @default.
- W4313294680 cites W2011515258 @default.
- W4313294680 cites W2013468174 @default.
- W4313294680 cites W2015224800 @default.
- W4313294680 cites W2025762136 @default.
- W4313294680 cites W2033561476 @default.
- W4313294680 cites W2042044318 @default.
- W4313294680 cites W2056829188 @default.
- W4313294680 cites W2063641219 @default.
- W4313294680 cites W2080438790 @default.
- W4313294680 cites W2099463494 @default.
- W4313294680 cites W2115221140 @default.
- W4313294680 cites W2136554337 @default.
- W4313294680 cites W2142079064 @default.
- W4313294680 cites W2327037637 @default.
- W4313294680 cites W2341194196 @default.
- W4313294680 cites W2370738035 @default.
- W4313294680 cites W2409659197 @default.
- W4313294680 cites W2544478099 @default.
- W4313294680 cites W2593674278 @default.
- W4313294680 cites W2606668089 @default.
- W4313294680 cites W2612775378 @default.
- W4313294680 cites W2807787832 @default.
- W4313294680 cites W2808220373 @default.
- W4313294680 cites W2889641161 @default.
- W4313294680 cites W2899489415 @default.
- W4313294680 cites W2904519396 @default.
- W4313294680 cites W2912123407 @default.
- W4313294680 cites W2917982630 @default.
- W4313294680 cites W2926714008 @default.
- W4313294680 cites W2945424927 @default.
- W4313294680 cites W2964563554 @default.
- W4313294680 cites W2966422607 @default.
- W4313294680 cites W3081518341 @default.
- W4313294680 cites W3087523324 @default.
- W4313294680 cites W3092474402 @default.
- W4313294680 cites W3130221774 @default.
- W4313294680 cites W3186417280 @default.
- W4313294680 cites W3198100569 @default.
- W4313294680 cites W3204751030 @default.
- W4313294680 cites W4200372464 @default.
- W4313294680 cites W4200618450 @default.
- W4313294680 cites W4210987377 @default.
- W4313294680 cites W4294975487 @default.
- W4313294680 cites W4295438406 @default.
- W4313294680 cites W4311674403 @default.
- W4313294680 cites W4312330288 @default.
- W4313294680 cites W4313145288 @default.
- W4313294680 cites W85123610 @default.
- W4313294680 doi "https://doi.org/10.1101/2022.12.22.22283839" @default.
- W4313294680 hasPublicationYear "2022" @default.
- W4313294680 type Work @default.
- W4313294680 citedByCount "0" @default.
- W4313294680 crossrefType "posted-content" @default.
- W4313294680 hasAuthorship W4313294680A5029140435 @default.
- W4313294680 hasAuthorship W4313294680A5035881704 @default.
- W4313294680 hasAuthorship W4313294680A5042878661 @default.
- W4313294680 hasAuthorship W4313294680A5062500213 @default.
- W4313294680 hasAuthorship W4313294680A5067065819 @default.
- W4313294680 hasBestOaLocation W43132946801 @default.
- W4313294680 hasConcept C104293457 @default.
- W4313294680 hasConcept C114793014 @default.
- W4313294680 hasConcept C120665830 @default.
- W4313294680 hasConcept C121332964 @default.
- W4313294680 hasConcept C126838900 @default.
- W4313294680 hasConcept C127313418 @default.
- W4313294680 hasConcept C1276947 @default.
- W4313294680 hasConcept C133386390 @default.
- W4313294680 hasConcept C136229726 @default.
- W4313294680 hasConcept C13662910 @default.
- W4313294680 hasConcept C142724271 @default.
- W4313294680 hasConcept C143409427 @default.
- W4313294680 hasConcept C16345878 @default.
- W4313294680 hasConcept C186145619 @default.
- W4313294680 hasConcept C192562407 @default.
- W4313294680 hasConcept C2524010 @default.
- W4313294680 hasConcept C2777093003 @default.
- W4313294680 hasConcept C2778542668 @default.
- W4313294680 hasConcept C2779134260 @default.
- W4313294680 hasConcept C2779734285 @default.
- W4313294680 hasConcept C33923547 @default.
- W4313294680 hasConcept C41008148 @default.
- W4313294680 hasConcept C46141821 @default.
- W4313294680 hasConcept C49040817 @default.
- W4313294680 hasConcept C71924100 @default.