Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313294808> ?p ?o ?g. }
- W4313294808 endingPage "360" @default.
- W4313294808 startingPage "360" @default.
- W4313294808 abstract "Inertial sensors are widely used in human motion monitoring. Orientation and position are the two most widely used measurements for motion monitoring. Tracking with the use of multiple inertial sensors is based on kinematic modelling which achieves a good level of accuracy when biomechanical constraints are applied. More recently, there is growing interest in tracking motion with a single inertial sensor to simplify the measurement system. The dead reckoning method is commonly used for estimating position from inertial sensors. However, significant errors are generated after applying the dead reckoning method because of the presence of sensor offsets and drift. These errors limit the feasibility of monitoring upper limb motion via a single inertial sensing system. In this paper, error correction methods are evaluated to investigate the feasibility of using a single sensor to track the movement of one upper limb segment. These include zero velocity update, wavelet analysis and high-pass filtering. The experiments were carried out using the nine-hole peg test. The results show that zero velocity update is the most effective method to correct the drift from the dead reckoning-based position tracking. If this method is used, then the use of a single inertial sensor to track the movement of a single limb segment is feasible." @default.
- W4313294808 created "2023-01-06" @default.
- W4313294808 creator A5010420002 @default.
- W4313294808 creator A5017499714 @default.
- W4313294808 creator A5032808401 @default.
- W4313294808 creator A5038610271 @default.
- W4313294808 creator A5042518433 @default.
- W4313294808 creator A5064971788 @default.
- W4313294808 creator A5067279312 @default.
- W4313294808 date "2022-12-29" @default.
- W4313294808 modified "2023-09-25" @default.
- W4313294808 title "Upper Limb Position Tracking with a Single Inertial Sensor Using Dead Reckoning Method with Drift Correction Techniques" @default.
- W4313294808 cites W1496690547 @default.
- W4313294808 cites W1564768010 @default.
- W4313294808 cites W1977431865 @default.
- W4313294808 cites W1982814196 @default.
- W4313294808 cites W1998521777 @default.
- W4313294808 cites W2004814601 @default.
- W4313294808 cites W2012447647 @default.
- W4313294808 cites W2016129654 @default.
- W4313294808 cites W2020496717 @default.
- W4313294808 cites W2052311057 @default.
- W4313294808 cites W2057561889 @default.
- W4313294808 cites W2095572637 @default.
- W4313294808 cites W2105320369 @default.
- W4313294808 cites W2110462047 @default.
- W4313294808 cites W2119526403 @default.
- W4313294808 cites W2152617661 @default.
- W4313294808 cites W2163839940 @default.
- W4313294808 cites W2166987927 @default.
- W4313294808 cites W2168910676 @default.
- W4313294808 cites W2172127559 @default.
- W4313294808 cites W2172233963 @default.
- W4313294808 cites W2340924002 @default.
- W4313294808 cites W2543932464 @default.
- W4313294808 cites W2618272117 @default.
- W4313294808 cites W2754967293 @default.
- W4313294808 cites W2900700859 @default.
- W4313294808 cites W2914350983 @default.
- W4313294808 cites W2914392737 @default.
- W4313294808 cites W2915753379 @default.
- W4313294808 cites W2953168961 @default.
- W4313294808 cites W2955490465 @default.
- W4313294808 cites W2957104866 @default.
- W4313294808 cites W2980042154 @default.
- W4313294808 cites W2989619171 @default.
- W4313294808 cites W3009313554 @default.
- W4313294808 cites W3012002759 @default.
- W4313294808 cites W3012315224 @default.
- W4313294808 cites W3045887334 @default.
- W4313294808 cites W3046495881 @default.
- W4313294808 cites W3123085681 @default.
- W4313294808 cites W3125785968 @default.
- W4313294808 cites W3145377020 @default.
- W4313294808 cites W3159540992 @default.
- W4313294808 doi "https://doi.org/10.3390/s23010360" @default.
- W4313294808 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36616958" @default.
- W4313294808 hasPublicationYear "2022" @default.
- W4313294808 type Work @default.
- W4313294808 citedByCount "1" @default.
- W4313294808 countsByYear W43132948082023 @default.
- W4313294808 crossrefType "journal-article" @default.
- W4313294808 hasAuthorship W4313294808A5010420002 @default.
- W4313294808 hasAuthorship W4313294808A5017499714 @default.
- W4313294808 hasAuthorship W4313294808A5032808401 @default.
- W4313294808 hasAuthorship W4313294808A5038610271 @default.
- W4313294808 hasAuthorship W4313294808A5042518433 @default.
- W4313294808 hasAuthorship W4313294808A5064971788 @default.
- W4313294808 hasAuthorship W4313294808A5067279312 @default.
- W4313294808 hasBestOaLocation W43132948081 @default.
- W4313294808 hasConcept C10138342 @default.
- W4313294808 hasConcept C104114177 @default.
- W4313294808 hasConcept C106131492 @default.
- W4313294808 hasConcept C106165642 @default.
- W4313294808 hasConcept C111919701 @default.
- W4313294808 hasConcept C121332964 @default.
- W4313294808 hasConcept C127413603 @default.
- W4313294808 hasConcept C128651787 @default.
- W4313294808 hasConcept C146978453 @default.
- W4313294808 hasConcept C154586513 @default.
- W4313294808 hasConcept C154945302 @default.
- W4313294808 hasConcept C157286648 @default.
- W4313294808 hasConcept C15744967 @default.
- W4313294808 hasConcept C158488048 @default.
- W4313294808 hasConcept C162324750 @default.
- W4313294808 hasConcept C16345878 @default.
- W4313294808 hasConcept C173386949 @default.
- W4313294808 hasConcept C189096121 @default.
- W4313294808 hasConcept C19417346 @default.
- W4313294808 hasConcept C198082294 @default.
- W4313294808 hasConcept C2524010 @default.
- W4313294808 hasConcept C2775924081 @default.
- W4313294808 hasConcept C2775936607 @default.
- W4313294808 hasConcept C293773 @default.
- W4313294808 hasConcept C31972630 @default.
- W4313294808 hasConcept C33923547 @default.
- W4313294808 hasConcept C39920418 @default.
- W4313294808 hasConcept C41008148 @default.