Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313296055> ?p ?o ?g. }
- W4313296055 endingPage "47535" @default.
- W4313296055 startingPage "47518" @default.
- W4313296055 abstract "Despite a large amount of money being spent on both food analyses and control measures, various food-borne illnesses associated with pathogens, toxins, pesticides, adulterants, colorants, and other contaminants pose a serious threat to human health, and thus food safety draws considerable attention in the modern pace of the world. The presence of various biogenic amines in processed food have been frequently considered as the primary quality parameter in order to check food freshness and spoilage of protein-rich food. Various conventional detection methods for detecting hazardous analytes including microscopy, nucleic acid, and immunoassay-based techniques have been employed; however, recently, array-based sensing strategies are becoming popular for the development of a highly accurate and precise analytical method. Array-based sensing is majorly facilitated by the advancements in multivariate analytical techniques as well as machine learning-based approaches. These techniques allow one to solve the typical problem associated with the interpretation of the complex response patterns generated in array-based strategies. Consequently, the machine learning-based neural networks enable the fast, robust, and accurate detection of analytes using sensor arrays. Thus, for commercial applications, most of the focus has shifted toward the development of analytical methods based on electrical and chemical sensor arrays. Therefore, herein, we briefly highlight and review the recently reported array-based sensor systems supported by machine learning and multivariate analytics to monitor food safety and quality in the field of food forensics." @default.
- W4313296055 created "2023-01-06" @default.
- W4313296055 creator A5002219999 @default.
- W4313296055 creator A5008234335 @default.
- W4313296055 creator A5019309865 @default.
- W4313296055 creator A5022354554 @default.
- W4313296055 creator A5073780661 @default.
- W4313296055 creator A5075305370 @default.
- W4313296055 date "2022-12-16" @default.
- W4313296055 modified "2023-09-27" @default.
- W4313296055 title "Machine Learning-Based Analytical Systems: Food Forensics" @default.
- W4313296055 cites W1506767743 @default.
- W4313296055 cites W1578803970 @default.
- W4313296055 cites W170028715 @default.
- W4313296055 cites W1781003552 @default.
- W4313296055 cites W1974780886 @default.
- W4313296055 cites W1976837844 @default.
- W4313296055 cites W1984981454 @default.
- W4313296055 cites W1991362481 @default.
- W4313296055 cites W1997082874 @default.
- W4313296055 cites W2025025456 @default.
- W4313296055 cites W2026085713 @default.
- W4313296055 cites W2034951977 @default.
- W4313296055 cites W2041423397 @default.
- W4313296055 cites W2041962508 @default.
- W4313296055 cites W2047787252 @default.
- W4313296055 cites W2050604127 @default.
- W4313296055 cites W2052237331 @default.
- W4313296055 cites W2075074809 @default.
- W4313296055 cites W2116296021 @default.
- W4313296055 cites W2128728535 @default.
- W4313296055 cites W2140196823 @default.
- W4313296055 cites W2164568072 @default.
- W4313296055 cites W2217320229 @default.
- W4313296055 cites W2312968374 @default.
- W4313296055 cites W2315677793 @default.
- W4313296055 cites W2330855044 @default.
- W4313296055 cites W2334989186 @default.
- W4313296055 cites W2335610720 @default.
- W4313296055 cites W2370134619 @default.
- W4313296055 cites W2398029297 @default.
- W4313296055 cites W2418631124 @default.
- W4313296055 cites W2467342379 @default.
- W4313296055 cites W2509108354 @default.
- W4313296055 cites W2546724206 @default.
- W4313296055 cites W2547288684 @default.
- W4313296055 cites W2555017836 @default.
- W4313296055 cites W2607909626 @default.
- W4313296055 cites W2621541809 @default.
- W4313296055 cites W2621944631 @default.
- W4313296055 cites W2677169684 @default.
- W4313296055 cites W2726978631 @default.
- W4313296055 cites W2759259612 @default.
- W4313296055 cites W2775353861 @default.
- W4313296055 cites W2777886168 @default.
- W4313296055 cites W2788788945 @default.
- W4313296055 cites W2789933186 @default.
- W4313296055 cites W2790852339 @default.
- W4313296055 cites W2806189582 @default.
- W4313296055 cites W2807733030 @default.
- W4313296055 cites W2809282179 @default.
- W4313296055 cites W2884375617 @default.
- W4313296055 cites W2889500153 @default.
- W4313296055 cites W2889675990 @default.
- W4313296055 cites W2899603885 @default.
- W4313296055 cites W2910555889 @default.
- W4313296055 cites W2932702995 @default.
- W4313296055 cites W2959691252 @default.
- W4313296055 cites W2963728730 @default.
- W4313296055 cites W2967314029 @default.
- W4313296055 cites W3002047737 @default.
- W4313296055 cites W3005015973 @default.
- W4313296055 cites W3013960009 @default.
- W4313296055 cites W3024314157 @default.
- W4313296055 cites W3027344391 @default.
- W4313296055 cites W3029260840 @default.
- W4313296055 cites W3043027384 @default.
- W4313296055 cites W3090417167 @default.
- W4313296055 cites W3097628033 @default.
- W4313296055 cites W3112353314 @default.
- W4313296055 cites W3113394170 @default.
- W4313296055 cites W3118359415 @default.
- W4313296055 cites W3132956480 @default.
- W4313296055 cites W3155907534 @default.
- W4313296055 cites W3156779132 @default.
- W4313296055 cites W3159156584 @default.
- W4313296055 cites W3193668794 @default.
- W4313296055 cites W3198131703 @default.
- W4313296055 cites W3203283699 @default.
- W4313296055 cites W3203678148 @default.
- W4313296055 cites W3207760471 @default.
- W4313296055 cites W3210740626 @default.
- W4313296055 cites W3216389696 @default.
- W4313296055 cites W4200464230 @default.
- W4313296055 cites W4206316422 @default.
- W4313296055 cites W4206638596 @default.
- W4313296055 cites W4214527022 @default.
- W4313296055 cites W4241273490 @default.