Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313296811> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4313296811 endingPage "638" @default.
- W4313296811 startingPage "630" @default.
- W4313296811 abstract "With the development of software-defined networking and coherent transmission, to name only a couple of emerging technical and technological areas, optical networks have rapidly expanded during the past few years. To handle with the enormous increment, several sections of optical transmission networks have been addressed via machine learning. Techniques such as support vector machine and KNN algorithms are widely used in fiber-induced nonlinear mitigation, which can cause enormous financial loses if the problem is not solved properly. Optical performance monitoring is another essential area in optical networks, which often adopts multitasking, while failure management, where anomaly detection takes place, rely on both supervised and unsupervised learning methods. The overview includes a brief synopsis of four types of learning methods, including supervised learning, unsupervised learning, semi-supervised learning and reinforcement, as well as the most recent advancements in methodologies used in optical fibre communication. At the end of the analysis, it is demonstrated that ML algorithms are selected based on the challenges present and we have to consider multiple factors when choosing a suitable algorithm. The combination of the two fields brings prosperity to each other." @default.
- W4313296811 created "2023-01-06" @default.
- W4313296811 creator A5029571874 @default.
- W4313296811 date "2022-12-27" @default.
- W4313296811 modified "2023-10-05" @default.
- W4313296811 title "Machine-Learning-Assisted Optical Fiber Communication System" @default.
- W4313296811 cites W2188299272 @default.
- W4313296811 cites W2337568808 @default.
- W4313296811 cites W2495235750 @default.
- W4313296811 cites W2766597266 @default.
- W4313296811 cites W2804337435 @default.
- W4313296811 cites W2894515975 @default.
- W4313296811 cites W2906463457 @default.
- W4313296811 cites W2919221886 @default.
- W4313296811 cites W3080627475 @default.
- W4313296811 cites W3163058848 @default.
- W4313296811 cites W3167769474 @default.
- W4313296811 cites W3200199322 @default.
- W4313296811 cites W3208674021 @default.
- W4313296811 cites W4214829285 @default.
- W4313296811 cites W4254371836 @default.
- W4313296811 doi "https://doi.org/10.54097/hset.v27i.3826" @default.
- W4313296811 hasPublicationYear "2022" @default.
- W4313296811 type Work @default.
- W4313296811 citedByCount "0" @default.
- W4313296811 crossrefType "journal-article" @default.
- W4313296811 hasAuthorship W4313296811A5029571874 @default.
- W4313296811 hasBestOaLocation W43132968111 @default.
- W4313296811 hasConcept C119857082 @default.
- W4313296811 hasConcept C136389625 @default.
- W4313296811 hasConcept C154945302 @default.
- W4313296811 hasConcept C41008148 @default.
- W4313296811 hasConcept C50644808 @default.
- W4313296811 hasConcept C739882 @default.
- W4313296811 hasConcept C761482 @default.
- W4313296811 hasConcept C76155785 @default.
- W4313296811 hasConcept C8038995 @default.
- W4313296811 hasConcept C97541855 @default.
- W4313296811 hasConceptScore W4313296811C119857082 @default.
- W4313296811 hasConceptScore W4313296811C136389625 @default.
- W4313296811 hasConceptScore W4313296811C154945302 @default.
- W4313296811 hasConceptScore W4313296811C41008148 @default.
- W4313296811 hasConceptScore W4313296811C50644808 @default.
- W4313296811 hasConceptScore W4313296811C739882 @default.
- W4313296811 hasConceptScore W4313296811C761482 @default.
- W4313296811 hasConceptScore W4313296811C76155785 @default.
- W4313296811 hasConceptScore W4313296811C8038995 @default.
- W4313296811 hasConceptScore W4313296811C97541855 @default.
- W4313296811 hasLocation W43132968111 @default.
- W4313296811 hasOpenAccess W4313296811 @default.
- W4313296811 hasPrimaryLocation W43132968111 @default.
- W4313296811 hasRelatedWork W3022038857 @default.
- W4313296811 hasRelatedWork W3046775127 @default.
- W4313296811 hasRelatedWork W3094076422 @default.
- W4313296811 hasRelatedWork W3162567751 @default.
- W4313296811 hasRelatedWork W3186093657 @default.
- W4313296811 hasRelatedWork W3199974879 @default.
- W4313296811 hasRelatedWork W3208099188 @default.
- W4313296811 hasRelatedWork W4283732135 @default.
- W4313296811 hasRelatedWork W4285260836 @default.
- W4313296811 hasRelatedWork W4319309271 @default.
- W4313296811 hasVolume "27" @default.
- W4313296811 isParatext "false" @default.
- W4313296811 isRetracted "false" @default.
- W4313296811 workType "article" @default.