Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313302548> ?p ?o ?g. }
- W4313302548 abstract "Quantum gas systems are ideal analog quantum simulation platforms for tackling some of the most challenging problems in strongly correlated quantum matter. However, they also expose the urgent need for new theoretical frameworks. Simple models in one dimension, well studied with conventional methods, have received considerable recent attention as test cases for new approaches. Ladder models provide the logical next step, where established numerical methods are still reliable, but complications of higher dimensional effects like gauge fields can be introduced. In this paper, we investigate the application of the recently developed neural-network quantum states in the two-leg Bose-Hubbard ladder under strong synthetic magnetic fields. Based on the restricted Boltzmann machine and feedforward neural network, we show that variational neural networks can reliably predict the superfluid-Mott insulator phase diagram in the strong coupling limit comparable with the accuracy of the density-matrix renormalization group. In the weak coupling limit, neural networks also diagnose other many-body phenomena such as the vortex, chiral, and biased-ladder phases. Our work demonstrates that the two-leg Bose-Hubbard model with magnetic flux is an ideal test ground for future developments of neural-network quantum states." @default.
- W4313302548 created "2023-01-06" @default.
- W4313302548 creator A5009503506 @default.
- W4313302548 creator A5069698002 @default.
- W4313302548 creator A5085623495 @default.
- W4313302548 date "2022-12-28" @default.
- W4313302548 modified "2023-10-02" @default.
- W4313302548 title "Neural-network quantum states for a two-leg Bose-Hubbard ladder under magnetic flux" @default.
- W4313302548 cites W1508600475 @default.
- W4313302548 cites W1527964431 @default.
- W4313302548 cites W1739343289 @default.
- W4313302548 cites W1965434068 @default.
- W4313302548 cites W1967336145 @default.
- W4313302548 cites W1977493031 @default.
- W4313302548 cites W1979308046 @default.
- W4313302548 cites W1983603188 @default.
- W4313302548 cites W1996586623 @default.
- W4313302548 cites W2004174983 @default.
- W4313302548 cites W2007391198 @default.
- W4313302548 cites W2012813559 @default.
- W4313302548 cites W2016710326 @default.
- W4313302548 cites W2019557447 @default.
- W4313302548 cites W2033722838 @default.
- W4313302548 cites W2034731189 @default.
- W4313302548 cites W2035577930 @default.
- W4313302548 cites W2038531793 @default.
- W4313302548 cites W2040503385 @default.
- W4313302548 cites W2048646003 @default.
- W4313302548 cites W2057666228 @default.
- W4313302548 cites W2063327258 @default.
- W4313302548 cites W2077454431 @default.
- W4313302548 cites W2077911073 @default.
- W4313302548 cites W2079488937 @default.
- W4313302548 cites W2086163750 @default.
- W4313302548 cites W2093214152 @default.
- W4313302548 cites W2138309709 @default.
- W4313302548 cites W2143622822 @default.
- W4313302548 cites W2163204379 @default.
- W4313302548 cites W2419175238 @default.
- W4313302548 cites W24584776 @default.
- W4313302548 cites W2492602290 @default.
- W4313302548 cites W2529069384 @default.
- W4313302548 cites W2531845481 @default.
- W4313302548 cites W2561902849 @default.
- W4313302548 cites W2582157661 @default.
- W4313302548 cites W2582761306 @default.
- W4313302548 cites W2582886917 @default.
- W4313302548 cites W2610038766 @default.
- W4313302548 cites W2750458571 @default.
- W4313302548 cites W2752346050 @default.
- W4313302548 cites W2755190613 @default.
- W4313302548 cites W2845055700 @default.
- W4313302548 cites W2895363620 @default.
- W4313302548 cites W2912516940 @default.
- W4313302548 cites W2921586812 @default.
- W4313302548 cites W2923537029 @default.
- W4313302548 cites W2946916998 @default.
- W4313302548 cites W2951696038 @default.
- W4313302548 cites W3045710579 @default.
- W4313302548 cites W3098011554 @default.
- W4313302548 cites W3098638211 @default.
- W4313302548 cites W3098757053 @default.
- W4313302548 cites W3099013266 @default.
- W4313302548 cites W3102461065 @default.
- W4313302548 cites W3104496372 @default.
- W4313302548 cites W3105447552 @default.
- W4313302548 cites W3138113227 @default.
- W4313302548 cites W3194257912 @default.
- W4313302548 cites W3209069304 @default.
- W4313302548 cites W3209148192 @default.
- W4313302548 cites W4224305355 @default.
- W4313302548 cites W4226484342 @default.
- W4313302548 cites W4288051764 @default.
- W4313302548 doi "https://doi.org/10.1103/physreva.106.063320" @default.
- W4313302548 hasPublicationYear "2022" @default.
- W4313302548 type Work @default.
- W4313302548 citedByCount "2" @default.
- W4313302548 countsByYear W43133025482023 @default.
- W4313302548 crossrefType "journal-article" @default.
- W4313302548 hasAuthorship W4313302548A5009503506 @default.
- W4313302548 hasAuthorship W4313302548A5069698002 @default.
- W4313302548 hasAuthorship W4313302548A5085623495 @default.
- W4313302548 hasBestOaLocation W43133025482 @default.
- W4313302548 hasConcept C121332964 @default.
- W4313302548 hasConcept C121864883 @default.
- W4313302548 hasConcept C154945302 @default.
- W4313302548 hasConcept C25536358 @default.
- W4313302548 hasConcept C29547527 @default.
- W4313302548 hasConcept C41008148 @default.
- W4313302548 hasConcept C50644808 @default.
- W4313302548 hasConcept C62520636 @default.
- W4313302548 hasConcept C84114770 @default.
- W4313302548 hasConceptScore W4313302548C121332964 @default.
- W4313302548 hasConceptScore W4313302548C121864883 @default.
- W4313302548 hasConceptScore W4313302548C154945302 @default.
- W4313302548 hasConceptScore W4313302548C25536358 @default.
- W4313302548 hasConceptScore W4313302548C29547527 @default.
- W4313302548 hasConceptScore W4313302548C41008148 @default.
- W4313302548 hasConceptScore W4313302548C50644808 @default.
- W4313302548 hasConceptScore W4313302548C62520636 @default.