Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313302904> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4313302904 abstract "Recently, Android applications have been playing a vital part in the everyday life as several services are offered via mobile applications. Due of its market dominance, Android is more at danger from malicious software, and this threat is growing. The exponential growth of malicious Android apps has made it essential to develop cutting-edge methods for identifying them. Despite the prevalence of a number of security-based approaches in the research, feature selection (FS) methods for Android malware detection methods still have to be developed. In this research, researchers provide a method for distinguishing malicious Android apps from legitimate ones by using a intelligent hyperparameter tuned deep learning based malware detection (IHPT-DLMD). Extraction of features and preliminary data processing are the main functions of the IHPT-DLMD method. The proposed IHPT-DLMD technique initially aims to determine the considerable permissions and API calls using the binary coyote optimization algorithm (BCOA)-based FS technique, which aids to remove the unnecessary features. Besides, bidirectional long short-term memory (Bi-LSTM) model is employed for the detection and classification of Android malware. Finally, the glowworm swarm optimization (GSO) algorithm is applied to optimize the hyperparameters of the BiLSTM model to produce effectual outcomes for Android application classification. This IHPT-DLMD method is checked for quality using a benchmark dataset and evaluated in several ways. The test data demonstrated overall higher performance of the IHPT-DLMD methodology in comparison to the most contemporary methods that are currently in use." @default.
- W4313302904 created "2023-01-06" @default.
- W4313302904 creator A5014083984 @default.
- W4313302904 creator A5016707450 @default.
- W4313302904 date "2023-01-28" @default.
- W4313302904 modified "2023-09-30" @default.
- W4313302904 title "Intelligent Hyperparameter-Tuned Deep Learning-Based Android Malware Detection and Classification Model" @default.
- W4313302904 cites W2010256880 @default.
- W4313302904 cites W2080157505 @default.
- W4313302904 cites W2465714297 @default.
- W4313302904 cites W2574022511 @default.
- W4313302904 cites W2789983203 @default.
- W4313302904 cites W2791505513 @default.
- W4313302904 cites W2885070483 @default.
- W4313302904 cites W2943383044 @default.
- W4313302904 cites W2966399854 @default.
- W4313302904 cites W2966634653 @default.
- W4313302904 cites W2986232939 @default.
- W4313302904 cites W3004549544 @default.
- W4313302904 cites W3027678336 @default.
- W4313302904 cites W3040974506 @default.
- W4313302904 cites W3083703328 @default.
- W4313302904 cites W3107058614 @default.
- W4313302904 cites W3112477217 @default.
- W4313302904 cites W3161054997 @default.
- W4313302904 cites W3171750273 @default.
- W4313302904 cites W4200098987 @default.
- W4313302904 cites W4292261130 @default.
- W4313302904 cites W4312959111 @default.
- W4313302904 doi "https://doi.org/10.1142/s0218126623501918" @default.
- W4313302904 hasPublicationYear "2023" @default.
- W4313302904 type Work @default.
- W4313302904 citedByCount "0" @default.
- W4313302904 crossrefType "journal-article" @default.
- W4313302904 hasAuthorship W4313302904A5014083984 @default.
- W4313302904 hasAuthorship W4313302904A5016707450 @default.
- W4313302904 hasConcept C111919701 @default.
- W4313302904 hasConcept C119857082 @default.
- W4313302904 hasConcept C154945302 @default.
- W4313302904 hasConcept C2989133298 @default.
- W4313302904 hasConcept C41008148 @default.
- W4313302904 hasConcept C541664917 @default.
- W4313302904 hasConcept C557433098 @default.
- W4313302904 hasConcept C8642999 @default.
- W4313302904 hasConceptScore W4313302904C111919701 @default.
- W4313302904 hasConceptScore W4313302904C119857082 @default.
- W4313302904 hasConceptScore W4313302904C154945302 @default.
- W4313302904 hasConceptScore W4313302904C2989133298 @default.
- W4313302904 hasConceptScore W4313302904C41008148 @default.
- W4313302904 hasConceptScore W4313302904C541664917 @default.
- W4313302904 hasConceptScore W4313302904C557433098 @default.
- W4313302904 hasConceptScore W4313302904C8642999 @default.
- W4313302904 hasIssue "11" @default.
- W4313302904 hasLocation W43133029041 @default.
- W4313302904 hasOpenAccess W4313302904 @default.
- W4313302904 hasPrimaryLocation W43133029041 @default.
- W4313302904 hasRelatedWork W2232725992 @default.
- W4313302904 hasRelatedWork W2731925707 @default.
- W4313302904 hasRelatedWork W2945522736 @default.
- W4313302904 hasRelatedWork W3012546138 @default.
- W4313302904 hasRelatedWork W3098623025 @default.
- W4313302904 hasRelatedWork W3160238701 @default.
- W4313302904 hasRelatedWork W4226431491 @default.
- W4313302904 hasRelatedWork W4313468873 @default.
- W4313302904 hasRelatedWork W4320167422 @default.
- W4313302904 hasRelatedWork W4321488585 @default.
- W4313302904 hasVolume "32" @default.
- W4313302904 isParatext "false" @default.
- W4313302904 isRetracted "false" @default.
- W4313302904 workType "article" @default.