Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313302964> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4313302964 abstract "This work proposes a machine learning-based phylogenetic tree generation model based on agglomerative clustering (PTGAC) that compares protein sequences considering all known chemical properties of amino acids. The proposed model can serve as a suitable alternative to the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), which is inherently time-consuming in nature. Initially, principal component analysis (PCA) is used in the proposed scheme to reduce the dimensions of 20 amino acids using seven known chemical characteristics, yielding 20 TP (Total Points) values for each amino acid. The approach of cumulative summing is then used to give a non-degenerate numeric representation of the sequences based on these 20 TP values. A special kind of three-component vector is proposed as a descriptor, which consists of a new type of non-central moment of orders one, two, and three. Subsequently, the proposed model uses Euclidean Distance measures among the descriptors to create a distance matrix. Finally, a phylogenetic tree is constructed using hierarchical agglomerative clustering based on the distance matrix. The results are compared with the UPGMA and other existing methods in terms of the quality and time of constructing the phylogenetic tree. Both qualitative and quantitative analysis are performed as key assessment criteria for analyzing the performance of the proposed model. The qualitative analysis of the phylogenetic tree is performed by considering rationalized perception, while the quantitative analysis is performed based on symmetric distance (SD). On both criteria, the results obtained by the proposed model are more satisfactory than those produced earlier on the same species by other methods. Notably, this method is found to be efficient in terms of both time and space requirements and is capable of dealing with protein sequences of varying lengths." @default.
- W4313302964 created "2023-01-06" @default.
- W4313302964 creator A5027341683 @default.
- W4313302964 creator A5038132842 @default.
- W4313302964 creator A5053165964 @default.
- W4313302964 creator A5072343066 @default.
- W4313302964 date "2023-02-10" @default.
- W4313302964 modified "2023-10-02" @default.
- W4313302964 title "PTGAC Model: A machine learning approach for constructing phylogenetic tree to compare protein sequences" @default.
- W4313302964 doi "https://doi.org/10.1142/s0219720022500287" @default.
- W4313302964 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36775259" @default.
- W4313302964 hasPublicationYear "2023" @default.
- W4313302964 type Work @default.
- W4313302964 citedByCount "0" @default.
- W4313302964 crossrefType "journal-article" @default.
- W4313302964 hasAuthorship W4313302964A5027341683 @default.
- W4313302964 hasAuthorship W4313302964A5038132842 @default.
- W4313302964 hasAuthorship W4313302964A5053165964 @default.
- W4313302964 hasAuthorship W4313302964A5072343066 @default.
- W4313302964 hasConcept C104317684 @default.
- W4313302964 hasConcept C111208986 @default.
- W4313302964 hasConcept C113174947 @default.
- W4313302964 hasConcept C114614502 @default.
- W4313302964 hasConcept C135763542 @default.
- W4313302964 hasConcept C153180895 @default.
- W4313302964 hasConcept C154945302 @default.
- W4313302964 hasConcept C193252679 @default.
- W4313302964 hasConcept C194898557 @default.
- W4313302964 hasConcept C27438332 @default.
- W4313302964 hasConcept C33923547 @default.
- W4313302964 hasConcept C41008148 @default.
- W4313302964 hasConcept C5349765 @default.
- W4313302964 hasConcept C54355233 @default.
- W4313302964 hasConcept C73555534 @default.
- W4313302964 hasConcept C86803240 @default.
- W4313302964 hasConcept C92835128 @default.
- W4313302964 hasConceptScore W4313302964C104317684 @default.
- W4313302964 hasConceptScore W4313302964C111208986 @default.
- W4313302964 hasConceptScore W4313302964C113174947 @default.
- W4313302964 hasConceptScore W4313302964C114614502 @default.
- W4313302964 hasConceptScore W4313302964C135763542 @default.
- W4313302964 hasConceptScore W4313302964C153180895 @default.
- W4313302964 hasConceptScore W4313302964C154945302 @default.
- W4313302964 hasConceptScore W4313302964C193252679 @default.
- W4313302964 hasConceptScore W4313302964C194898557 @default.
- W4313302964 hasConceptScore W4313302964C27438332 @default.
- W4313302964 hasConceptScore W4313302964C33923547 @default.
- W4313302964 hasConceptScore W4313302964C41008148 @default.
- W4313302964 hasConceptScore W4313302964C5349765 @default.
- W4313302964 hasConceptScore W4313302964C54355233 @default.
- W4313302964 hasConceptScore W4313302964C73555534 @default.
- W4313302964 hasConceptScore W4313302964C86803240 @default.
- W4313302964 hasConceptScore W4313302964C92835128 @default.
- W4313302964 hasLocation W43133029641 @default.
- W4313302964 hasLocation W43133029642 @default.
- W4313302964 hasOpenAccess W4313302964 @default.
- W4313302964 hasPrimaryLocation W43133029641 @default.
- W4313302964 hasRelatedWork W1872375678 @default.
- W4313302964 hasRelatedWork W1977017150 @default.
- W4313302964 hasRelatedWork W1984043995 @default.
- W4313302964 hasRelatedWork W2036744511 @default.
- W4313302964 hasRelatedWork W2052550780 @default.
- W4313302964 hasRelatedWork W2066266503 @default.
- W4313302964 hasRelatedWork W2189266547 @default.
- W4313302964 hasRelatedWork W2395471067 @default.
- W4313302964 hasRelatedWork W2966602782 @default.
- W4313302964 hasRelatedWork W4313302964 @default.
- W4313302964 isParatext "false" @default.
- W4313302964 isRetracted "false" @default.
- W4313302964 workType "article" @default.