Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313303099> ?p ?o ?g. }
- W4313303099 endingPage "3402" @default.
- W4313303099 startingPage "3391" @default.
- W4313303099 abstract "Abstract The strength reduction method is often used to predict the stability of soil slopes with complex soil properties and failure mechanisms. However, it requires a considerable computational effort. In this paper, we make use of a convolutional neural network to reduce the computational cost. The factor of safety of 600 slopes with different inclination and soil properties is first calculated with the strength reduction method. A convolutional neural network is then trained and validated. We demonstrate the performance of our approach and show how to augment the dataset to further enhance its capability and prevent overfitting." @default.
- W4313303099 created "2023-01-06" @default.
- W4313303099 creator A5014999920 @default.
- W4313303099 creator A5019513809 @default.
- W4313303099 creator A5029330408 @default.
- W4313303099 creator A5029625647 @default.
- W4313303099 creator A5051089528 @default.
- W4313303099 date "2022-12-30" @default.
- W4313303099 modified "2023-09-24" @default.
- W4313303099 title "Convolutional neural networks prediction of the factor of safety of random layered slopes by the strength reduction method" @default.
- W4313303099 cites W1482294348 @default.
- W4313303099 cites W1583657870 @default.
- W4313303099 cites W1806891645 @default.
- W4313303099 cites W1967281567 @default.
- W4313303099 cites W1969560166 @default.
- W4313303099 cites W1983023737 @default.
- W4313303099 cites W1989235997 @default.
- W4313303099 cites W1990995949 @default.
- W4313303099 cites W2006147747 @default.
- W4313303099 cites W2044879407 @default.
- W4313303099 cites W2067130442 @default.
- W4313303099 cites W2068816117 @default.
- W4313303099 cites W2069527243 @default.
- W4313303099 cites W2084609950 @default.
- W4313303099 cites W2084894745 @default.
- W4313303099 cites W2091914419 @default.
- W4313303099 cites W2112796928 @default.
- W4313303099 cites W2119969191 @default.
- W4313303099 cites W2161064703 @default.
- W4313303099 cites W2170493813 @default.
- W4313303099 cites W2333707429 @default.
- W4313303099 cites W2587598231 @default.
- W4313303099 cites W2618530766 @default.
- W4313303099 cites W2792576728 @default.
- W4313303099 cites W2793257870 @default.
- W4313303099 cites W2950419939 @default.
- W4313303099 cites W2975035925 @default.
- W4313303099 cites W2996991292 @default.
- W4313303099 cites W3000872367 @default.
- W4313303099 cites W3013498854 @default.
- W4313303099 cites W3028690036 @default.
- W4313303099 cites W3037098832 @default.
- W4313303099 cites W3039159666 @default.
- W4313303099 cites W3087340769 @default.
- W4313303099 cites W3097549582 @default.
- W4313303099 cites W3097933861 @default.
- W4313303099 cites W3101398262 @default.
- W4313303099 cites W3132291851 @default.
- W4313303099 cites W3155149976 @default.
- W4313303099 cites W3161290685 @default.
- W4313303099 cites W3197394958 @default.
- W4313303099 cites W3209169151 @default.
- W4313303099 cites W4224999693 @default.
- W4313303099 cites W4246459822 @default.
- W4313303099 cites W4283315406 @default.
- W4313303099 cites W4284699140 @default.
- W4313303099 cites W4376595430 @default.
- W4313303099 doi "https://doi.org/10.1007/s11440-022-01783-3" @default.
- W4313303099 hasPublicationYear "2022" @default.
- W4313303099 type Work @default.
- W4313303099 citedByCount "0" @default.
- W4313303099 crossrefType "journal-article" @default.
- W4313303099 hasAuthorship W4313303099A5014999920 @default.
- W4313303099 hasAuthorship W4313303099A5019513809 @default.
- W4313303099 hasAuthorship W4313303099A5029330408 @default.
- W4313303099 hasAuthorship W4313303099A5029625647 @default.
- W4313303099 hasAuthorship W4313303099A5051089528 @default.
- W4313303099 hasBestOaLocation W43133030991 @default.
- W4313303099 hasConcept C111335779 @default.
- W4313303099 hasConcept C112972136 @default.
- W4313303099 hasConcept C119857082 @default.
- W4313303099 hasConcept C123453687 @default.
- W4313303099 hasConcept C127413603 @default.
- W4313303099 hasConcept C135628077 @default.
- W4313303099 hasConcept C154945302 @default.
- W4313303099 hasConcept C159985019 @default.
- W4313303099 hasConcept C17116066 @default.
- W4313303099 hasConcept C187320778 @default.
- W4313303099 hasConcept C192562407 @default.
- W4313303099 hasConcept C22019652 @default.
- W4313303099 hasConcept C2524010 @default.
- W4313303099 hasConcept C2778702308 @default.
- W4313303099 hasConcept C33923547 @default.
- W4313303099 hasConcept C41008148 @default.
- W4313303099 hasConcept C500666722 @default.
- W4313303099 hasConcept C50644808 @default.
- W4313303099 hasConcept C66938386 @default.
- W4313303099 hasConcept C81363708 @default.
- W4313303099 hasConceptScore W4313303099C111335779 @default.
- W4313303099 hasConceptScore W4313303099C112972136 @default.
- W4313303099 hasConceptScore W4313303099C119857082 @default.
- W4313303099 hasConceptScore W4313303099C123453687 @default.
- W4313303099 hasConceptScore W4313303099C127413603 @default.
- W4313303099 hasConceptScore W4313303099C135628077 @default.
- W4313303099 hasConceptScore W4313303099C154945302 @default.
- W4313303099 hasConceptScore W4313303099C159985019 @default.
- W4313303099 hasConceptScore W4313303099C17116066 @default.
- W4313303099 hasConceptScore W4313303099C187320778 @default.