Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313303740> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4313303740 abstract "Solar photovoltaic (PV) technology has merged as an efficient and versatile method for converting the Sun's vast energy into electricity. Innovation in developing new materials and solar cell architectures is required to ensure lightweight, portable, and flexible miniaturized electronic devices operate for long periods with reduced battery demand. Recent advances in biomedical implantable and wearable devices have coincided with a growing interest in efficient energy-harvesting solutions. Such devices primarily rely on rechargeable batteries to satisfy their energy needs. Moreover, Artificial Intelligence (AI) and Machine Learning (ML) techniques are touted as game changers in energy harvesting, especially in solar energy materials. In this article, we systematically review a range of ML techniques for optimizing the performance of low-cost solar cells for miniaturized electronic devices. Our systematic review reveals that these ML techniques can expedite the discovery of new solar cell materials and architectures. In particular, this review covers a broad range of ML techniques targeted at producing low-cost solar cells. Moreover, we present a new method of classifying the literature according to data synthesis, ML algorithms, optimization, and fabrication process. In addition, our review reveals that the Gaussian Process Regression (GPR) ML technique with Bayesian Optimization (BO) enables the design of the most promising low-solar cell architecture. Therefore, our review is a critical evaluation of existing ML techniques and is presented to guide researchers in discovering the next generation of low-cost solar cells using ML techniques." @default.
- W4313303740 created "2023-01-06" @default.
- W4313303740 creator A5033435768 @default.
- W4313303740 creator A5047966890 @default.
- W4313303740 creator A5050741219 @default.
- W4313303740 creator A5055146165 @default.
- W4313303740 creator A5065342243 @default.
- W4313303740 creator A5069684274 @default.
- W4313303740 creator A5084895339 @default.
- W4313303740 creator A5089174765 @default.
- W4313303740 date "2022-12-26" @default.
- W4313303740 modified "2023-10-03" @default.
- W4313303740 title "Machine learning for accelerating the discovery of high performance low-cost solar cells: a systematic review" @default.
- W4313303740 doi "https://doi.org/10.48550/arxiv.2212.13893" @default.
- W4313303740 hasPublicationYear "2022" @default.
- W4313303740 type Work @default.
- W4313303740 citedByCount "1" @default.
- W4313303740 countsByYear W43133037402023 @default.
- W4313303740 crossrefType "posted-content" @default.
- W4313303740 hasAuthorship W4313303740A5033435768 @default.
- W4313303740 hasAuthorship W4313303740A5047966890 @default.
- W4313303740 hasAuthorship W4313303740A5050741219 @default.
- W4313303740 hasAuthorship W4313303740A5055146165 @default.
- W4313303740 hasAuthorship W4313303740A5065342243 @default.
- W4313303740 hasAuthorship W4313303740A5069684274 @default.
- W4313303740 hasAuthorship W4313303740A5084895339 @default.
- W4313303740 hasAuthorship W4313303740A5089174765 @default.
- W4313303740 hasBestOaLocation W43133037401 @default.
- W4313303740 hasConcept C101518730 @default.
- W4313303740 hasConcept C105795698 @default.
- W4313303740 hasConcept C119599485 @default.
- W4313303740 hasConcept C127413603 @default.
- W4313303740 hasConcept C154945302 @default.
- W4313303740 hasConcept C186370098 @default.
- W4313303740 hasConcept C201995342 @default.
- W4313303740 hasConcept C21880701 @default.
- W4313303740 hasConcept C2778049539 @default.
- W4313303740 hasConcept C2780824857 @default.
- W4313303740 hasConcept C33923547 @default.
- W4313303740 hasConcept C41008148 @default.
- W4313303740 hasConcept C41291067 @default.
- W4313303740 hasConcept C541104983 @default.
- W4313303740 hasConceptScore W4313303740C101518730 @default.
- W4313303740 hasConceptScore W4313303740C105795698 @default.
- W4313303740 hasConceptScore W4313303740C119599485 @default.
- W4313303740 hasConceptScore W4313303740C127413603 @default.
- W4313303740 hasConceptScore W4313303740C154945302 @default.
- W4313303740 hasConceptScore W4313303740C186370098 @default.
- W4313303740 hasConceptScore W4313303740C201995342 @default.
- W4313303740 hasConceptScore W4313303740C21880701 @default.
- W4313303740 hasConceptScore W4313303740C2778049539 @default.
- W4313303740 hasConceptScore W4313303740C2780824857 @default.
- W4313303740 hasConceptScore W4313303740C33923547 @default.
- W4313303740 hasConceptScore W4313303740C41008148 @default.
- W4313303740 hasConceptScore W4313303740C41291067 @default.
- W4313303740 hasConceptScore W4313303740C541104983 @default.
- W4313303740 hasLocation W43133037401 @default.
- W4313303740 hasOpenAccess W4313303740 @default.
- W4313303740 hasPrimaryLocation W43133037401 @default.
- W4313303740 hasRelatedWork W1607139133 @default.
- W4313303740 hasRelatedWork W2011202826 @default.
- W4313303740 hasRelatedWork W2047334733 @default.
- W4313303740 hasRelatedWork W2057426537 @default.
- W4313303740 hasRelatedWork W2114791621 @default.
- W4313303740 hasRelatedWork W2320174937 @default.
- W4313303740 hasRelatedWork W2737496642 @default.
- W4313303740 hasRelatedWork W4221103728 @default.
- W4313303740 hasRelatedWork W4226050542 @default.
- W4313303740 hasRelatedWork W4240687870 @default.
- W4313303740 isParatext "false" @default.
- W4313303740 isRetracted "false" @default.
- W4313303740 workType "article" @default.