Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313303775> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4313303775 abstract "Computer tomography (CT) have been routinely used for the diagnosis of lung diseases and recently, during the pandemic, for detecting the infectivity and severity of COVID-19 disease. One of the major concerns in using ma-chine learning (ML) approaches for automatic processing of CT scan images in clinical setting is that these methods are trained on limited and biased sub-sets of publicly available COVID-19 data. This has raised concerns regarding the generalizability of these models on external datasets, not seen by the model during training. To address some of these issues, in this work CT scan images from confirmed COVID-19 data obtained from one of the largest public repositories, COVIDx CT 2A were used for training and internal vali-dation of machine learning models. For the external validation we generated Indian-COVID-19 CT dataset, an open-source repository containing 3D CT volumes and 12096 chest CT images from 288 COVID-19 patients from In-dia. Comparative performance evaluation of four state-of-the-art machine learning models, viz., a lightweight convolutional neural network (CNN), and three other CNN based deep learning (DL) models such as VGG-16, ResNet-50 and Inception-v3 in classifying CT images into three classes, viz., normal, non-covid pneumonia, and COVID-19 is carried out on these two datasets. Our analysis showed that the performance of all the models is comparable on the hold-out COVIDx CT 2A test set with 90% - 99% accuracies (96% for CNN), while on the external Indian-COVID-19 CT dataset a drop in the performance is observed for all the models (8% - 19%). The traditional ma-chine learning model, CNN performed the best on the external dataset (accu-racy 88%) in comparison to the deep learning models, indicating that a light-weight CNN is better generalizable on unseen data. The data and code are made available at https://github.com/aleesuss/c19." @default.
- W4313303775 created "2023-01-06" @default.
- W4313303775 creator A5017945905 @default.
- W4313303775 creator A5026674830 @default.
- W4313303775 creator A5040098950 @default.
- W4313303775 creator A5048733947 @default.
- W4313303775 creator A5066775485 @default.
- W4313303775 date "2022-12-28" @default.
- W4313303775 modified "2023-10-16" @default.
- W4313303775 title "Evaluating Generalizability of Deep Learning Models Using Indian-COVID-19 CT Dataset" @default.
- W4313303775 doi "https://doi.org/10.48550/arxiv.2212.13929" @default.
- W4313303775 hasPublicationYear "2022" @default.
- W4313303775 type Work @default.
- W4313303775 citedByCount "0" @default.
- W4313303775 crossrefType "posted-content" @default.
- W4313303775 hasAuthorship W4313303775A5017945905 @default.
- W4313303775 hasAuthorship W4313303775A5026674830 @default.
- W4313303775 hasAuthorship W4313303775A5040098950 @default.
- W4313303775 hasAuthorship W4313303775A5048733947 @default.
- W4313303775 hasAuthorship W4313303775A5066775485 @default.
- W4313303775 hasBestOaLocation W43133037751 @default.
- W4313303775 hasConcept C105795698 @default.
- W4313303775 hasConcept C108583219 @default.
- W4313303775 hasConcept C119857082 @default.
- W4313303775 hasConcept C126838900 @default.
- W4313303775 hasConcept C142724271 @default.
- W4313303775 hasConcept C153180895 @default.
- W4313303775 hasConcept C154945302 @default.
- W4313303775 hasConcept C27158222 @default.
- W4313303775 hasConcept C2779134260 @default.
- W4313303775 hasConcept C3008058167 @default.
- W4313303775 hasConcept C33923547 @default.
- W4313303775 hasConcept C41008148 @default.
- W4313303775 hasConcept C50644808 @default.
- W4313303775 hasConcept C524204448 @default.
- W4313303775 hasConcept C544519230 @default.
- W4313303775 hasConcept C58489278 @default.
- W4313303775 hasConcept C71924100 @default.
- W4313303775 hasConcept C81363708 @default.
- W4313303775 hasConceptScore W4313303775C105795698 @default.
- W4313303775 hasConceptScore W4313303775C108583219 @default.
- W4313303775 hasConceptScore W4313303775C119857082 @default.
- W4313303775 hasConceptScore W4313303775C126838900 @default.
- W4313303775 hasConceptScore W4313303775C142724271 @default.
- W4313303775 hasConceptScore W4313303775C153180895 @default.
- W4313303775 hasConceptScore W4313303775C154945302 @default.
- W4313303775 hasConceptScore W4313303775C27158222 @default.
- W4313303775 hasConceptScore W4313303775C2779134260 @default.
- W4313303775 hasConceptScore W4313303775C3008058167 @default.
- W4313303775 hasConceptScore W4313303775C33923547 @default.
- W4313303775 hasConceptScore W4313303775C41008148 @default.
- W4313303775 hasConceptScore W4313303775C50644808 @default.
- W4313303775 hasConceptScore W4313303775C524204448 @default.
- W4313303775 hasConceptScore W4313303775C544519230 @default.
- W4313303775 hasConceptScore W4313303775C58489278 @default.
- W4313303775 hasConceptScore W4313303775C71924100 @default.
- W4313303775 hasConceptScore W4313303775C81363708 @default.
- W4313303775 hasLocation W43133037751 @default.
- W4313303775 hasOpenAccess W4313303775 @default.
- W4313303775 hasPrimaryLocation W43133037751 @default.
- W4313303775 hasRelatedWork W2337926734 @default.
- W4313303775 hasRelatedWork W2732542196 @default.
- W4313303775 hasRelatedWork W2738221750 @default.
- W4313303775 hasRelatedWork W3021430260 @default.
- W4313303775 hasRelatedWork W3040868419 @default.
- W4313303775 hasRelatedWork W3128914156 @default.
- W4313303775 hasRelatedWork W3136076031 @default.
- W4313303775 hasRelatedWork W3156786002 @default.
- W4313303775 hasRelatedWork W4311257506 @default.
- W4313303775 hasRelatedWork W564581980 @default.
- W4313303775 isParatext "false" @default.
- W4313303775 isRetracted "false" @default.
- W4313303775 workType "article" @default.