Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313303839> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4313303839 abstract "For a positive integer $r$, George Andrews proved that the set of partitions of $n$ in which odd multiplicities are at least $2r + 1$ is equinumerous with the set of partitions of $n$ in which odd parts are congruent to $2r + 1$ modulo $4r + 2$. This was given as an extension of MacMahon's theorem ($r = 1$). Andrews, Ericksson, Petrov and Romik gave a bijective proof of MacMahon's theorem. Despite several bijections being given, until recently, none of them was in the spirit of Andrews-Ericksson-Petrov-Romik bijection. Andrews' theorem has also been extended recently. Our goal is to give a generalized bijective mapping of this further extension in the spirit of Andrews-Ericksson-Petrov-Romik bijection." @default.
- W4313303839 created "2023-01-06" @default.
- W4313303839 creator A5027755509 @default.
- W4313303839 date "2022-12-28" @default.
- W4313303839 modified "2023-09-23" @default.
- W4313303839 title "A note on Andrews-MacMahon theorem" @default.
- W4313303839 doi "https://doi.org/10.48550/arxiv.2212.13926" @default.
- W4313303839 hasPublicationYear "2022" @default.
- W4313303839 type Work @default.
- W4313303839 citedByCount "0" @default.
- W4313303839 crossrefType "posted-content" @default.
- W4313303839 hasAuthorship W4313303839A5027755509 @default.
- W4313303839 hasBestOaLocation W43133038391 @default.
- W4313303839 hasConcept C114614502 @default.
- W4313303839 hasConcept C118615104 @default.
- W4313303839 hasConcept C199360897 @default.
- W4313303839 hasConcept C202444582 @default.
- W4313303839 hasConcept C24424167 @default.
- W4313303839 hasConcept C2778029271 @default.
- W4313303839 hasConcept C33923547 @default.
- W4313303839 hasConcept C41008148 @default.
- W4313303839 hasConcept C48659774 @default.
- W4313303839 hasConcept C54732982 @default.
- W4313303839 hasConcept C97137487 @default.
- W4313303839 hasConceptScore W4313303839C114614502 @default.
- W4313303839 hasConceptScore W4313303839C118615104 @default.
- W4313303839 hasConceptScore W4313303839C199360897 @default.
- W4313303839 hasConceptScore W4313303839C202444582 @default.
- W4313303839 hasConceptScore W4313303839C24424167 @default.
- W4313303839 hasConceptScore W4313303839C2778029271 @default.
- W4313303839 hasConceptScore W4313303839C33923547 @default.
- W4313303839 hasConceptScore W4313303839C41008148 @default.
- W4313303839 hasConceptScore W4313303839C48659774 @default.
- W4313303839 hasConceptScore W4313303839C54732982 @default.
- W4313303839 hasConceptScore W4313303839C97137487 @default.
- W4313303839 hasLocation W43133038391 @default.
- W4313303839 hasOpenAccess W4313303839 @default.
- W4313303839 hasPrimaryLocation W43133038391 @default.
- W4313303839 hasRelatedWork W1495264477 @default.
- W4313303839 hasRelatedWork W2015282370 @default.
- W4313303839 hasRelatedWork W2088884881 @default.
- W4313303839 hasRelatedWork W2224963483 @default.
- W4313303839 hasRelatedWork W2394881477 @default.
- W4313303839 hasRelatedWork W2963206482 @default.
- W4313303839 hasRelatedWork W2964248680 @default.
- W4313303839 hasRelatedWork W3116398505 @default.
- W4313303839 hasRelatedWork W4288019661 @default.
- W4313303839 hasRelatedWork W4300041268 @default.
- W4313303839 isParatext "false" @default.
- W4313303839 isRetracted "false" @default.
- W4313303839 workType "article" @default.