Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313303842> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4313303842 abstract "The performance of learning models heavily relies on the availability and adequacy of training data. To address the dataset adequacy issue, researchers have extensively explored data augmentation (DA) as a promising approach. DA generates new data instances through transformations applied to the available data, thereby increasing dataset size and variability. This approach has enhanced model performance and accuracy, particularly in addressing class imbalance problems in classification tasks. However, few studies have explored DA for the Arabic language, relying on traditional approaches such as paraphrasing or noising-based techniques. In this paper, we propose a new Arabic DA method that employs the recent powerful modeling technique, namely the AraGPT-2, for the augmentation process. The generated sentences are evaluated in terms of context, semantics, diversity, and novelty using the Euclidean, cosine, Jaccard, and BLEU distances. Finally, the AraBERT transformer is used on sentiment classification tasks to evaluate the classification performance of the augmented Arabic dataset. The experiments were conducted on four sentiment Arabic datasets: AraSarcasm, ASTD, ATT, and MOVIE. The selected datasets vary in size, label number, and unbalanced classes. The results show that the proposed methodology enhanced the Arabic sentiment text classification on all datasets with an increase in F1 score by 4% in AraSarcasm, 6% in ASTD, 9% in ATT, and 13% in MOVIE." @default.
- W4313303842 created "2023-01-06" @default.
- W4313303842 creator A5079977902 @default.
- W4313303842 creator A5084756913 @default.
- W4313303842 creator A5086349948 @default.
- W4313303842 date "2022-12-28" @default.
- W4313303842 modified "2023-09-26" @default.
- W4313303842 title "Data Augmentation using Transformers and Similarity Measures for Improving Arabic Text Classification" @default.
- W4313303842 doi "https://doi.org/10.48550/arxiv.2212.13939" @default.
- W4313303842 hasPublicationYear "2022" @default.
- W4313303842 type Work @default.
- W4313303842 citedByCount "0" @default.
- W4313303842 crossrefType "posted-content" @default.
- W4313303842 hasAuthorship W4313303842A5079977902 @default.
- W4313303842 hasAuthorship W4313303842A5084756913 @default.
- W4313303842 hasAuthorship W4313303842A5086349948 @default.
- W4313303842 hasBestOaLocation W43133038421 @default.
- W4313303842 hasConcept C119857082 @default.
- W4313303842 hasConcept C121332964 @default.
- W4313303842 hasConcept C124101348 @default.
- W4313303842 hasConcept C138885662 @default.
- W4313303842 hasConcept C153180895 @default.
- W4313303842 hasConcept C154945302 @default.
- W4313303842 hasConcept C165801399 @default.
- W4313303842 hasConcept C203519979 @default.
- W4313303842 hasConcept C204321447 @default.
- W4313303842 hasConcept C2780762811 @default.
- W4313303842 hasConcept C41008148 @default.
- W4313303842 hasConcept C41895202 @default.
- W4313303842 hasConcept C62520636 @default.
- W4313303842 hasConcept C66322947 @default.
- W4313303842 hasConcept C96455323 @default.
- W4313303842 hasConceptScore W4313303842C119857082 @default.
- W4313303842 hasConceptScore W4313303842C121332964 @default.
- W4313303842 hasConceptScore W4313303842C124101348 @default.
- W4313303842 hasConceptScore W4313303842C138885662 @default.
- W4313303842 hasConceptScore W4313303842C153180895 @default.
- W4313303842 hasConceptScore W4313303842C154945302 @default.
- W4313303842 hasConceptScore W4313303842C165801399 @default.
- W4313303842 hasConceptScore W4313303842C203519979 @default.
- W4313303842 hasConceptScore W4313303842C204321447 @default.
- W4313303842 hasConceptScore W4313303842C2780762811 @default.
- W4313303842 hasConceptScore W4313303842C41008148 @default.
- W4313303842 hasConceptScore W4313303842C41895202 @default.
- W4313303842 hasConceptScore W4313303842C62520636 @default.
- W4313303842 hasConceptScore W4313303842C66322947 @default.
- W4313303842 hasConceptScore W4313303842C96455323 @default.
- W4313303842 hasLocation W43133038421 @default.
- W4313303842 hasOpenAccess W4313303842 @default.
- W4313303842 hasPrimaryLocation W43133038421 @default.
- W4313303842 hasRelatedWork W1892332993 @default.
- W4313303842 hasRelatedWork W1968351314 @default.
- W4313303842 hasRelatedWork W1970767350 @default.
- W4313303842 hasRelatedWork W2009780927 @default.
- W4313303842 hasRelatedWork W2023014905 @default.
- W4313303842 hasRelatedWork W2088785407 @default.
- W4313303842 hasRelatedWork W2332732142 @default.
- W4313303842 hasRelatedWork W2441762250 @default.
- W4313303842 hasRelatedWork W4283659422 @default.
- W4313303842 hasRelatedWork W4381948805 @default.
- W4313303842 isParatext "false" @default.
- W4313303842 isRetracted "false" @default.
- W4313303842 workType "article" @default.