Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313304214> ?p ?o ?g. }
- W4313304214 abstract "The variation in multiple sclerosis (MS) disease severity is incompletely explained by genetics, suggesting genetic and environmental interactions are involved. Moreover, the lack of prognostic biomarkers makes it difficult for clinicians to optimise care. DNA methylation is one epigenetic mechanism by which gene-environment interactions can be assessed. Here, we aimed to identify DNA methylation patterns associated with mild and severe relapse-onset MS (RMS) and to test the utility of methylation as a predictive biomarker.We conducted an epigenome-wide association study between 235 females with mild (n = 119) or severe (n = 116) with RMS. Methylation was measured with the Illumina methylationEPIC array and analysed using logistic regression. To generate hypotheses about the functional consequence of differential methylation, we conducted gene set enrichment analysis using ToppGene. We compared the accuracy of three machine learning models in classifying disease severity: (1) clinical data available at baseline (age at onset and first symptoms) built using elastic net (EN) regression, (2) methylation data using EN regression and (3) a weighted methylation risk score of differentially methylated positions (DMPs) from the main analysis using logistic regression. We used a conservative 70:30 test:train split for classification modelling. A false discovery rate threshold of 0.05 was used to assess statistical significance.Females with mild or severe RMS had 1472 DMPs in whole blood (839 hypermethylated, 633 hypomethylated in the severe group). Differential methylation was enriched in genes related to neuronal cellular compartments and processes, and B-cell receptor signalling. Whole-blood methylation levels at 1708 correlated CpG sites classified disease severity more accurately (machine learning model 2, AUC = 0.91) than clinical data (model 1, AUC = 0.74) or the wMRS (model 3, AUC = 0.77). Of the 1708 selected CpGs, 100 overlapped with DMPs from the main analysis at the gene level. These overlapping genes were enriched in neuron projection and dendrite extension, lending support to our finding that neuronal processes, rather than immune processes, are implicated in disease severity.RMS disease severity is associated with whole-blood methylation at genes related to neuronal structure and function. Moreover, correlated whole-blood methylation patterns can assign disease severity in females with RMS more accurately than clinical data available at diagnosis." @default.
- W4313304214 created "2023-01-06" @default.
- W4313304214 creator A5006953465 @default.
- W4313304214 creator A5014375641 @default.
- W4313304214 creator A5020403890 @default.
- W4313304214 creator A5020944412 @default.
- W4313304214 creator A5028230236 @default.
- W4313304214 creator A5029469523 @default.
- W4313304214 creator A5059129245 @default.
- W4313304214 creator A5087732153 @default.
- W4313304214 creator A5088611035 @default.
- W4313304214 date "2022-12-01" @default.
- W4313304214 modified "2023-10-17" @default.
- W4313304214 title "Whole-blood methylation signatures are associated with and accurately classify multiple sclerosis disease severity" @default.
- W4313304214 cites W1465453806 @default.
- W4313304214 cites W1944603265 @default.
- W4313304214 cites W1985987855 @default.
- W4313304214 cites W1987315255 @default.
- W4313304214 cites W2055237453 @default.
- W4313304214 cites W2059898472 @default.
- W4313304214 cites W2095682261 @default.
- W4313304214 cites W2097360283 @default.
- W4313304214 cites W2102213696 @default.
- W4313304214 cites W2104549677 @default.
- W4313304214 cites W2108169091 @default.
- W4313304214 cites W2109752085 @default.
- W4313304214 cites W2112165124 @default.
- W4313304214 cites W2114169865 @default.
- W4313304214 cites W2123929789 @default.
- W4313304214 cites W2127431419 @default.
- W4313304214 cites W2139344244 @default.
- W4313304214 cites W2145126338 @default.
- W4313304214 cites W2146662840 @default.
- W4313304214 cites W2161633633 @default.
- W4313304214 cites W2167351750 @default.
- W4313304214 cites W2212507736 @default.
- W4313304214 cites W2316537321 @default.
- W4313304214 cites W2326826867 @default.
- W4313304214 cites W2345469235 @default.
- W4313304214 cites W2419478310 @default.
- W4313304214 cites W2511515754 @default.
- W4313304214 cites W2512837040 @default.
- W4313304214 cites W2523285199 @default.
- W4313304214 cites W2529024004 @default.
- W4313304214 cites W2583347849 @default.
- W4313304214 cites W2585634679 @default.
- W4313304214 cites W2732260820 @default.
- W4313304214 cites W2737338545 @default.
- W4313304214 cites W2739712020 @default.
- W4313304214 cites W2745417329 @default.
- W4313304214 cites W2760056442 @default.
- W4313304214 cites W2808054557 @default.
- W4313304214 cites W2884389524 @default.
- W4313304214 cites W2896064422 @default.
- W4313304214 cites W2899099233 @default.
- W4313304214 cites W2903426398 @default.
- W4313304214 cites W2912654909 @default.
- W4313304214 cites W2939725511 @default.
- W4313304214 cites W2942879774 @default.
- W4313304214 cites W2949100461 @default.
- W4313304214 cites W2950573195 @default.
- W4313304214 cites W2951560273 @default.
- W4313304214 cites W2981477552 @default.
- W4313304214 cites W2985233784 @default.
- W4313304214 cites W2987457837 @default.
- W4313304214 cites W3093238501 @default.
- W4313304214 cites W3094176199 @default.
- W4313304214 cites W3106296722 @default.
- W4313304214 cites W3113237970 @default.
- W4313304214 cites W3191878299 @default.
- W4313304214 cites W4294541781 @default.
- W4313304214 cites W4306638423 @default.
- W4313304214 cites W4310461864 @default.
- W4313304214 doi "https://doi.org/10.1186/s13148-022-01397-2" @default.
- W4313304214 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36585691" @default.
- W4313304214 hasPublicationYear "2022" @default.
- W4313304214 type Work @default.
- W4313304214 citedByCount "7" @default.
- W4313304214 countsByYear W43133042142023 @default.
- W4313304214 crossrefType "journal-article" @default.
- W4313304214 hasAuthorship W4313304214A5006953465 @default.
- W4313304214 hasAuthorship W4313304214A5014375641 @default.
- W4313304214 hasAuthorship W4313304214A5020403890 @default.
- W4313304214 hasAuthorship W4313304214A5020944412 @default.
- W4313304214 hasAuthorship W4313304214A5028230236 @default.
- W4313304214 hasAuthorship W4313304214A5029469523 @default.
- W4313304214 hasAuthorship W4313304214A5059129245 @default.
- W4313304214 hasAuthorship W4313304214A5087732153 @default.
- W4313304214 hasAuthorship W4313304214A5088611035 @default.
- W4313304214 hasBestOaLocation W43133042141 @default.
- W4313304214 hasConcept C104317684 @default.
- W4313304214 hasConcept C117717151 @default.
- W4313304214 hasConcept C126322002 @default.
- W4313304214 hasConcept C140173407 @default.
- W4313304214 hasConcept C143998085 @default.
- W4313304214 hasConcept C150194340 @default.
- W4313304214 hasConcept C151956035 @default.
- W4313304214 hasConcept C190727270 @default.
- W4313304214 hasConcept C2779134260 @default.
- W4313304214 hasConcept C2781197716 @default.