Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313304783> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4313304783 abstract "In this paper, we employ multiple UAVs coordinated by a base station (BS) to help the ground users (GUs) to offload their sensing data. Different UAVs can adapt their trajectories and network formation to expedite data transmissions via multi-hop relaying. The trajectory planning aims to collect all GUs' data, while the UAVs' network formation optimizes the multi-hop UAV network topology to minimize the energy consumption and transmission delay. The joint network formation and trajectory optimization is solved by a two-step iterative approach. Firstly, we devise the adaptive network formation scheme by using a heuristic algorithm to balance the UAVs' energy consumption and data queue size. Then, with the fixed network formation, the UAVs' trajectories are further optimized by using multi-agent deep reinforcement learning without knowing the GUs' traffic demands and spatial distribution. To improve the learning efficiency, we further employ Bayesian optimization to estimate the UAVs' flying decisions based on historical trajectory points. This helps avoid inefficient action explorations and improves the convergence rate in the model training. The simulation results reveal close spatial-temporal couplings between the UAVs' trajectory planning and network formation. Compared with several baselines, our solution can better exploit the UAVs' cooperation in data offloading, thus improving energy efficiency and delay performance." @default.
- W4313304783 created "2023-01-06" @default.
- W4313304783 creator A5007992576 @default.
- W4313304783 creator A5036726873 @default.
- W4313304783 creator A5042460024 @default.
- W4313304783 creator A5042610567 @default.
- W4313304783 creator A5067767564 @default.
- W4313304783 creator A5091266202 @default.
- W4313304783 date "2022-12-27" @default.
- W4313304783 modified "2023-09-23" @default.
- W4313304783 title "Bayesian Optimization Enhanced Deep Reinforcement Learning for Trajectory Planning and Network Formation in Multi-UAV Networks" @default.
- W4313304783 doi "https://doi.org/10.48550/arxiv.2212.13396" @default.
- W4313304783 hasPublicationYear "2022" @default.
- W4313304783 type Work @default.
- W4313304783 citedByCount "0" @default.
- W4313304783 crossrefType "posted-content" @default.
- W4313304783 hasAuthorship W4313304783A5007992576 @default.
- W4313304783 hasAuthorship W4313304783A5036726873 @default.
- W4313304783 hasAuthorship W4313304783A5042460024 @default.
- W4313304783 hasAuthorship W4313304783A5042610567 @default.
- W4313304783 hasAuthorship W4313304783A5067767564 @default.
- W4313304783 hasAuthorship W4313304783A5091266202 @default.
- W4313304783 hasBestOaLocation W43133047831 @default.
- W4313304783 hasConcept C105795698 @default.
- W4313304783 hasConcept C106189395 @default.
- W4313304783 hasConcept C119599485 @default.
- W4313304783 hasConcept C120314980 @default.
- W4313304783 hasConcept C121332964 @default.
- W4313304783 hasConcept C126255220 @default.
- W4313304783 hasConcept C127413603 @default.
- W4313304783 hasConcept C1276947 @default.
- W4313304783 hasConcept C13662910 @default.
- W4313304783 hasConcept C154945302 @default.
- W4313304783 hasConcept C159886148 @default.
- W4313304783 hasConcept C162324750 @default.
- W4313304783 hasConcept C2742236 @default.
- W4313304783 hasConcept C2777303404 @default.
- W4313304783 hasConcept C2780165032 @default.
- W4313304783 hasConcept C33923547 @default.
- W4313304783 hasConcept C41008148 @default.
- W4313304783 hasConcept C50522688 @default.
- W4313304783 hasConcept C79403827 @default.
- W4313304783 hasConcept C97541855 @default.
- W4313304783 hasConceptScore W4313304783C105795698 @default.
- W4313304783 hasConceptScore W4313304783C106189395 @default.
- W4313304783 hasConceptScore W4313304783C119599485 @default.
- W4313304783 hasConceptScore W4313304783C120314980 @default.
- W4313304783 hasConceptScore W4313304783C121332964 @default.
- W4313304783 hasConceptScore W4313304783C126255220 @default.
- W4313304783 hasConceptScore W4313304783C127413603 @default.
- W4313304783 hasConceptScore W4313304783C1276947 @default.
- W4313304783 hasConceptScore W4313304783C13662910 @default.
- W4313304783 hasConceptScore W4313304783C154945302 @default.
- W4313304783 hasConceptScore W4313304783C159886148 @default.
- W4313304783 hasConceptScore W4313304783C162324750 @default.
- W4313304783 hasConceptScore W4313304783C2742236 @default.
- W4313304783 hasConceptScore W4313304783C2777303404 @default.
- W4313304783 hasConceptScore W4313304783C2780165032 @default.
- W4313304783 hasConceptScore W4313304783C33923547 @default.
- W4313304783 hasConceptScore W4313304783C41008148 @default.
- W4313304783 hasConceptScore W4313304783C50522688 @default.
- W4313304783 hasConceptScore W4313304783C79403827 @default.
- W4313304783 hasConceptScore W4313304783C97541855 @default.
- W4313304783 hasLocation W43133047831 @default.
- W4313304783 hasOpenAccess W4313304783 @default.
- W4313304783 hasPrimaryLocation W43133047831 @default.
- W4313304783 hasRelatedWork W1626977535 @default.
- W4313304783 hasRelatedWork W2029247269 @default.
- W4313304783 hasRelatedWork W2101748387 @default.
- W4313304783 hasRelatedWork W2145363145 @default.
- W4313304783 hasRelatedWork W3213537191 @default.
- W4313304783 hasRelatedWork W3213838085 @default.
- W4313304783 hasRelatedWork W4221142403 @default.
- W4313304783 hasRelatedWork W4286892941 @default.
- W4313304783 hasRelatedWork W4287868411 @default.
- W4313304783 hasRelatedWork W4313123734 @default.
- W4313304783 isParatext "false" @default.
- W4313304783 isRetracted "false" @default.
- W4313304783 workType "article" @default.