Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313305154> ?p ?o ?g. }
- W4313305154 endingPage "116618" @default.
- W4313305154 startingPage "116618" @default.
- W4313305154 abstract "The determination of suitable input parameters for the computational analysis of progressive damage in composites is mostly based on trial-and-error attempts leading to subjective models with limited general use. This study explores the application of genetic algorithms for an objective and automated calibration of continuum damage models in finite element simulations. The general applicability and robustness are demonstrated in three case studies containing carbon and glass fiber-reinforced laminates subjected to progressive tensile and compressive fracture tests. The load–displacement curves of these fracture tests build the basis for optimizing the input parameters of the damage models. The validation in independent load cases and a good correlation of damage patterns between experimental observations and simulations show that the optimized parameters can produce accurate and physically meaningful results. The optimization process requires up to 250 finite element simulations which is significantly less than comparable data-driven approaches incorporating machine learning." @default.
- W4313305154 created "2023-01-06" @default.
- W4313305154 creator A5062276044 @default.
- W4313305154 creator A5090136607 @default.
- W4313305154 date "2023-03-01" @default.
- W4313305154 modified "2023-09-25" @default.
- W4313305154 title "Objective and automated calibration of progressive damage models for finite element simulation of fiber reinforced composites" @default.
- W4313305154 cites W1821883753 @default.
- W4313305154 cites W1972369990 @default.
- W4313305154 cites W1973312059 @default.
- W4313305154 cites W1977820604 @default.
- W4313305154 cites W1995984735 @default.
- W4313305154 cites W1998163695 @default.
- W4313305154 cites W2004906124 @default.
- W4313305154 cites W2020598362 @default.
- W4313305154 cites W2021499270 @default.
- W4313305154 cites W2025105631 @default.
- W4313305154 cites W2031684646 @default.
- W4313305154 cites W2062523101 @default.
- W4313305154 cites W2071563913 @default.
- W4313305154 cites W2072972082 @default.
- W4313305154 cites W2075739118 @default.
- W4313305154 cites W2082433018 @default.
- W4313305154 cites W2091176294 @default.
- W4313305154 cites W2093195672 @default.
- W4313305154 cites W2108560279 @default.
- W4313305154 cites W2116992828 @default.
- W4313305154 cites W2137407971 @default.
- W4313305154 cites W2142596047 @default.
- W4313305154 cites W2145479420 @default.
- W4313305154 cites W2149590185 @default.
- W4313305154 cites W2156452613 @default.
- W4313305154 cites W2276120917 @default.
- W4313305154 cites W2290883490 @default.
- W4313305154 cites W2396189840 @default.
- W4313305154 cites W2572532389 @default.
- W4313305154 cites W2742992705 @default.
- W4313305154 cites W2790662215 @default.
- W4313305154 cites W2904373493 @default.
- W4313305154 cites W2962857746 @default.
- W4313305154 cites W3000907101 @default.
- W4313305154 cites W3008619115 @default.
- W4313305154 cites W3016410670 @default.
- W4313305154 cites W3019848710 @default.
- W4313305154 cites W3049038916 @default.
- W4313305154 cites W3090826909 @default.
- W4313305154 cites W3094704314 @default.
- W4313305154 cites W3125579095 @default.
- W4313305154 cites W3128121756 @default.
- W4313305154 cites W3135702666 @default.
- W4313305154 cites W3139171465 @default.
- W4313305154 cites W3174731037 @default.
- W4313305154 cites W3198865159 @default.
- W4313305154 cites W3209940208 @default.
- W4313305154 cites W4223523244 @default.
- W4313305154 cites W4289754967 @default.
- W4313305154 cites W4307002224 @default.
- W4313305154 doi "https://doi.org/10.1016/j.compstruct.2022.116618" @default.
- W4313305154 hasPublicationYear "2023" @default.
- W4313305154 type Work @default.
- W4313305154 citedByCount "3" @default.
- W4313305154 countsByYear W43133051542023 @default.
- W4313305154 crossrefType "journal-article" @default.
- W4313305154 hasAuthorship W4313305154A5062276044 @default.
- W4313305154 hasAuthorship W4313305154A5090136607 @default.
- W4313305154 hasConcept C104317684 @default.
- W4313305154 hasConcept C105795698 @default.
- W4313305154 hasConcept C107551265 @default.
- W4313305154 hasConcept C112950240 @default.
- W4313305154 hasConcept C127413603 @default.
- W4313305154 hasConcept C135628077 @default.
- W4313305154 hasConcept C15744967 @default.
- W4313305154 hasConcept C159985019 @default.
- W4313305154 hasConcept C165838908 @default.
- W4313305154 hasConcept C185592680 @default.
- W4313305154 hasConcept C192562407 @default.
- W4313305154 hasConcept C33923547 @default.
- W4313305154 hasConcept C41008148 @default.
- W4313305154 hasConcept C43369102 @default.
- W4313305154 hasConcept C542102704 @default.
- W4313305154 hasConcept C55493867 @default.
- W4313305154 hasConcept C63479239 @default.
- W4313305154 hasConcept C66938386 @default.
- W4313305154 hasConceptScore W4313305154C104317684 @default.
- W4313305154 hasConceptScore W4313305154C105795698 @default.
- W4313305154 hasConceptScore W4313305154C107551265 @default.
- W4313305154 hasConceptScore W4313305154C112950240 @default.
- W4313305154 hasConceptScore W4313305154C127413603 @default.
- W4313305154 hasConceptScore W4313305154C135628077 @default.
- W4313305154 hasConceptScore W4313305154C15744967 @default.
- W4313305154 hasConceptScore W4313305154C159985019 @default.
- W4313305154 hasConceptScore W4313305154C165838908 @default.
- W4313305154 hasConceptScore W4313305154C185592680 @default.
- W4313305154 hasConceptScore W4313305154C192562407 @default.
- W4313305154 hasConceptScore W4313305154C33923547 @default.
- W4313305154 hasConceptScore W4313305154C41008148 @default.
- W4313305154 hasConceptScore W4313305154C43369102 @default.
- W4313305154 hasConceptScore W4313305154C542102704 @default.