Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313305208> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4313305208 abstract "The usual figure of merit characterizing the performance of neural networks applied to problems in the quantum domain is their accuracy, being the probability of a correct answer on a previously unseen input. Here we append this parameter with the uncertainty of the prediction, characterizing the degree of confidence in the answer. A powerful technique for estimating both the accuracy and the uncertainty is provided by Bayesian neural networks (BNNs). We first give simple illustrative examples of advantages brought forward by BNNs, out of which we wish to highlight their ability of reliable uncertainty estimation even after training with biased data sets. Then we apply BNNs to the problem of recognition of quantum contextuality which shows that the uncertainty itself is an independent parameter identifying the chance of misclassification of contextuality." @default.
- W4313305208 created "2023-01-06" @default.
- W4313305208 creator A5052431003 @default.
- W4313305208 creator A5084618431 @default.
- W4313305208 creator A5085393246 @default.
- W4313305208 date "2022-12-27" @default.
- W4313305208 modified "2023-09-27" @default.
- W4313305208 title "Uncertainty of Feed Forward Neural Networks Recognizing Quantum Contextuality" @default.
- W4313305208 doi "https://doi.org/10.48550/arxiv.2212.13564" @default.
- W4313305208 hasPublicationYear "2022" @default.
- W4313305208 type Work @default.
- W4313305208 citedByCount "0" @default.
- W4313305208 crossrefType "posted-content" @default.
- W4313305208 hasAuthorship W4313305208A5052431003 @default.
- W4313305208 hasAuthorship W4313305208A5084618431 @default.
- W4313305208 hasAuthorship W4313305208A5085393246 @default.
- W4313305208 hasBestOaLocation W43133052081 @default.
- W4313305208 hasConcept C107673813 @default.
- W4313305208 hasConcept C119857082 @default.
- W4313305208 hasConcept C121332964 @default.
- W4313305208 hasConcept C134306372 @default.
- W4313305208 hasConcept C154945302 @default.
- W4313305208 hasConcept C193588502 @default.
- W4313305208 hasConcept C33724603 @default.
- W4313305208 hasConcept C33923547 @default.
- W4313305208 hasConcept C36503486 @default.
- W4313305208 hasConcept C41008148 @default.
- W4313305208 hasConcept C50644808 @default.
- W4313305208 hasConcept C62520636 @default.
- W4313305208 hasConcept C84114770 @default.
- W4313305208 hasConceptScore W4313305208C107673813 @default.
- W4313305208 hasConceptScore W4313305208C119857082 @default.
- W4313305208 hasConceptScore W4313305208C121332964 @default.
- W4313305208 hasConceptScore W4313305208C134306372 @default.
- W4313305208 hasConceptScore W4313305208C154945302 @default.
- W4313305208 hasConceptScore W4313305208C193588502 @default.
- W4313305208 hasConceptScore W4313305208C33724603 @default.
- W4313305208 hasConceptScore W4313305208C33923547 @default.
- W4313305208 hasConceptScore W4313305208C36503486 @default.
- W4313305208 hasConceptScore W4313305208C41008148 @default.
- W4313305208 hasConceptScore W4313305208C50644808 @default.
- W4313305208 hasConceptScore W4313305208C62520636 @default.
- W4313305208 hasConceptScore W4313305208C84114770 @default.
- W4313305208 hasLocation W43133052081 @default.
- W4313305208 hasOpenAccess W4313305208 @default.
- W4313305208 hasPrimaryLocation W43133052081 @default.
- W4313305208 hasRelatedWork W1581446651 @default.
- W4313305208 hasRelatedWork W1599577651 @default.
- W4313305208 hasRelatedWork W1956930971 @default.
- W4313305208 hasRelatedWork W2037915485 @default.
- W4313305208 hasRelatedWork W2514161006 @default.
- W4313305208 hasRelatedWork W2902946190 @default.
- W4313305208 hasRelatedWork W3154094704 @default.
- W4313305208 hasRelatedWork W32248825 @default.
- W4313305208 hasRelatedWork W1626608839 @default.
- W4313305208 hasRelatedWork W1629725936 @default.
- W4313305208 isParatext "false" @default.
- W4313305208 isRetracted "false" @default.
- W4313305208 workType "article" @default.