Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313305570> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4313305570 abstract "Recurrent neural networks (RNNs) have brought a lot of advancements in sequence labeling tasks and sequence data. However, their effectiveness is limited when the observations in the sequence are irregularly sampled, where the observations arrive at irregular time intervals. To address this, continuous time variants of the RNNs were introduced based on neural ordinary differential equations (NODE). They learn a better representation of the data using the continuous transformation of hidden states over time, taking into account the time interval between the observations. However, they are still limited in their capability as they use the discrete transformations and a fixed discrete number of layers (depth) over an input in the sequence to produce the output observation. We intend to address this limitation by proposing RNNs based on differential equations which model continuous transformations over both depth and time to predict an output for a given input in the sequence. Specifically, we propose continuous depth recurrent neural differential equations (CDR-NDE) which generalizes RNN models by continuously evolving the hidden states in both the temporal and depth dimensions. CDR-NDE considers two separate differential equations over each of these dimensions and models the evolution in the temporal and depth directions alternatively. We also propose the CDR-NDE-heat model based on partial differential equations which treats the computation of hidden states as solving a heat equation over time. We demonstrate the effectiveness of the proposed models by comparing against the state-of-the-art RNN models on real world sequence labeling problems and data." @default.
- W4313305570 created "2023-01-06" @default.
- W4313305570 creator A5014572700 @default.
- W4313305570 creator A5019469798 @default.
- W4313305570 creator A5080478273 @default.
- W4313305570 date "2022-12-28" @default.
- W4313305570 modified "2023-10-14" @default.
- W4313305570 title "Continuous Depth Recurrent Neural Differential Equations" @default.
- W4313305570 doi "https://doi.org/10.48550/arxiv.2212.13714" @default.
- W4313305570 hasPublicationYear "2022" @default.
- W4313305570 type Work @default.
- W4313305570 citedByCount "0" @default.
- W4313305570 crossrefType "posted-content" @default.
- W4313305570 hasAuthorship W4313305570A5014572700 @default.
- W4313305570 hasAuthorship W4313305570A5019469798 @default.
- W4313305570 hasAuthorship W4313305570A5080478273 @default.
- W4313305570 hasBestOaLocation W43133055701 @default.
- W4313305570 hasConcept C11413529 @default.
- W4313305570 hasConcept C121332964 @default.
- W4313305570 hasConcept C134306372 @default.
- W4313305570 hasConcept C147168706 @default.
- W4313305570 hasConcept C154945302 @default.
- W4313305570 hasConcept C2778112365 @default.
- W4313305570 hasConcept C33923547 @default.
- W4313305570 hasConcept C41008148 @default.
- W4313305570 hasConcept C50644808 @default.
- W4313305570 hasConcept C51544822 @default.
- W4313305570 hasConcept C54355233 @default.
- W4313305570 hasConcept C78045399 @default.
- W4313305570 hasConcept C86803240 @default.
- W4313305570 hasConcept C93226319 @default.
- W4313305570 hasConcept C93779851 @default.
- W4313305570 hasConcept C97355855 @default.
- W4313305570 hasConceptScore W4313305570C11413529 @default.
- W4313305570 hasConceptScore W4313305570C121332964 @default.
- W4313305570 hasConceptScore W4313305570C134306372 @default.
- W4313305570 hasConceptScore W4313305570C147168706 @default.
- W4313305570 hasConceptScore W4313305570C154945302 @default.
- W4313305570 hasConceptScore W4313305570C2778112365 @default.
- W4313305570 hasConceptScore W4313305570C33923547 @default.
- W4313305570 hasConceptScore W4313305570C41008148 @default.
- W4313305570 hasConceptScore W4313305570C50644808 @default.
- W4313305570 hasConceptScore W4313305570C51544822 @default.
- W4313305570 hasConceptScore W4313305570C54355233 @default.
- W4313305570 hasConceptScore W4313305570C78045399 @default.
- W4313305570 hasConceptScore W4313305570C86803240 @default.
- W4313305570 hasConceptScore W4313305570C93226319 @default.
- W4313305570 hasConceptScore W4313305570C93779851 @default.
- W4313305570 hasConceptScore W4313305570C97355855 @default.
- W4313305570 hasLocation W43133055701 @default.
- W4313305570 hasOpenAccess W4313305570 @default.
- W4313305570 hasPrimaryLocation W43133055701 @default.
- W4313305570 hasRelatedWork W1975563205 @default.
- W4313305570 hasRelatedWork W1986129090 @default.
- W4313305570 hasRelatedWork W1996525727 @default.
- W4313305570 hasRelatedWork W2068803396 @default.
- W4313305570 hasRelatedWork W2084967032 @default.
- W4313305570 hasRelatedWork W2093617977 @default.
- W4313305570 hasRelatedWork W2150477111 @default.
- W4313305570 hasRelatedWork W2595065423 @default.
- W4313305570 hasRelatedWork W2988233686 @default.
- W4313305570 hasRelatedWork W2145770879 @default.
- W4313305570 isParatext "false" @default.
- W4313305570 isRetracted "false" @default.
- W4313305570 workType "article" @default.