Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313305770> ?p ?o ?g. }
- W4313305770 abstract "<sec> <title>BACKGROUND</title> Developing an understanding of the public discourse on COVID-19 vaccination on social media is important not only for addressing the ongoing COVID-19 pandemic but also for future pathogen outbreaks. There are various research efforts in this domain, although, a need still exists for a comprehensive topic-wise analysis of tweets in favor of and against COVID-19 vaccines. </sec> <sec> <title>OBJECTIVE</title> This study characterizes the discussion points in favor of and against COVID-19 vaccines posted on Twitter during the first year of the pandemic. The aim of this study was primarily to contrast the views expressed by both camps, their respective activity patterns, and their correlation with vaccine-related events. A further aim was to gauge the genuineness of the concerns expressed in antivax tweets. </sec> <sec> <title>METHODS</title> We examined a Twitter data set containing 75 million English tweets discussing the COVID-19 vaccination from March 2020 to March 2021. We trained a stance detection algorithm using natural language processing techniques to classify tweets as <i>antivax</i> or <i>provax</i> and examined the main topics of discourse using topic modeling techniques. </sec> <sec> <title>RESULTS</title> Provax tweets (37 million) far outnumbered antivax tweets (10 million) and focused mostly on vaccine development, whereas antivax tweets covered a wide range of topics, including opposition to vaccine mandate and concerns about safety. Although some antivax tweets included genuine concerns, there was a large amount of falsehood. Both stances discussed many of the same topics from opposite viewpoints. Memes and jokes were among the most retweeted messages. Most tweets from both stances (9,007,481/10,566,679, 85.24% antivax and 24,463,708/37,044,507, 66.03% provax tweets) came from <i>dual-stance</i> users who posted both provax and antivax tweets during the observation period. </sec> <sec> <title>CONCLUSIONS</title> This study is a comprehensive account of COVID-19 vaccine discourse in the English language on Twitter from March 2020 to March 2021. The broad range of discussion points covered almost the entire conversation, and their temporal dynamics revealed a significant correlation with COVID-19 vaccine–related events. We did not find any evidence of polarization and prevalence of antivax discourse over Twitter. However, targeted countering of falsehoods is important because only a small fraction of antivax discourse touched on a genuine issue. Future research should examine the role of memes and humor in driving web-based social media activity. </sec> <sec> <title>CLINICALTRIAL</title> <p /> </sec>" @default.
- W4313305770 created "2023-01-06" @default.
- W4313305770 creator A5021381399 @default.
- W4313305770 creator A5024360273 @default.
- W4313305770 creator A5048388477 @default.
- W4313305770 creator A5061769343 @default.
- W4313305770 creator A5067775856 @default.
- W4313305770 creator A5069886490 @default.
- W4313305770 creator A5071203255 @default.
- W4313305770 creator A5075094128 @default.
- W4313305770 creator A5080127041 @default.
- W4313305770 date "2022-12-15" @default.
- W4313305770 modified "2023-09-27" @default.
- W4313305770 title "Demystifying the COVID-19 vaccine discourse on Twitter (Preprint)" @default.
- W4313305770 cites W1999458239 @default.
- W4313305770 cites W2030707410 @default.
- W4313305770 cites W2061922307 @default.
- W4313305770 cites W2072239694 @default.
- W4313305770 cites W2323290257 @default.
- W4313305770 cites W2565166462 @default.
- W4313305770 cites W2963403337 @default.
- W4313305770 cites W3021053579 @default.
- W4313305770 cites W3034905468 @default.
- W4313305770 cites W3043509095 @default.
- W4313305770 cites W3096393000 @default.
- W4313305770 cites W3101739755 @default.
- W4313305770 cites W3109798642 @default.
- W4313305770 cites W3110741250 @default.
- W4313305770 cites W3112362785 @default.
- W4313305770 cites W3116921363 @default.
- W4313305770 cites W3118703752 @default.
- W4313305770 cites W3131631110 @default.
- W4313305770 cites W3134263496 @default.
- W4313305770 cites W3135716007 @default.
- W4313305770 cites W3165710938 @default.
- W4313305770 cites W3171261489 @default.
- W4313305770 cites W3185045788 @default.
- W4313305770 cites W3197510855 @default.
- W4313305770 cites W3207552790 @default.
- W4313305770 cites W3211023713 @default.
- W4313305770 cites W4200192202 @default.
- W4313305770 cites W4200361296 @default.
- W4313305770 cites W4205755435 @default.
- W4313305770 cites W4206236567 @default.
- W4313305770 cites W4206670875 @default.
- W4313305770 cites W4211099396 @default.
- W4313305770 cites W4220927460 @default.
- W4313305770 cites W4220927473 @default.
- W4313305770 cites W4224305601 @default.
- W4313305770 cites W4226086327 @default.
- W4313305770 cites W4233573780 @default.
- W4313305770 cites W4239897644 @default.
- W4313305770 cites W4244225445 @default.
- W4313305770 cites W4248923807 @default.
- W4313305770 cites W4283459423 @default.
- W4313305770 cites W4298092859 @default.
- W4313305770 doi "https://doi.org/10.2196/preprints.45069" @default.
- W4313305770 hasPublicationYear "2022" @default.
- W4313305770 type Work @default.
- W4313305770 citedByCount "0" @default.
- W4313305770 crossrefType "posted-content" @default.
- W4313305770 hasAuthorship W4313305770A5021381399 @default.
- W4313305770 hasAuthorship W4313305770A5024360273 @default.
- W4313305770 hasAuthorship W4313305770A5048388477 @default.
- W4313305770 hasAuthorship W4313305770A5061769343 @default.
- W4313305770 hasAuthorship W4313305770A5067775856 @default.
- W4313305770 hasAuthorship W4313305770A5069886490 @default.
- W4313305770 hasAuthorship W4313305770A5071203255 @default.
- W4313305770 hasAuthorship W4313305770A5075094128 @default.
- W4313305770 hasAuthorship W4313305770A5080127041 @default.
- W4313305770 hasConcept C142724271 @default.
- W4313305770 hasConcept C159047783 @default.
- W4313305770 hasConcept C17744445 @default.
- W4313305770 hasConcept C199539241 @default.
- W4313305770 hasConcept C22070199 @default.
- W4313305770 hasConcept C2775884135 @default.
- W4313305770 hasConcept C2779134260 @default.
- W4313305770 hasConcept C3008058167 @default.
- W4313305770 hasConcept C518677369 @default.
- W4313305770 hasConcept C524204448 @default.
- W4313305770 hasConcept C71924100 @default.
- W4313305770 hasConcept C89623803 @default.
- W4313305770 hasConceptScore W4313305770C142724271 @default.
- W4313305770 hasConceptScore W4313305770C159047783 @default.
- W4313305770 hasConceptScore W4313305770C17744445 @default.
- W4313305770 hasConceptScore W4313305770C199539241 @default.
- W4313305770 hasConceptScore W4313305770C22070199 @default.
- W4313305770 hasConceptScore W4313305770C2775884135 @default.
- W4313305770 hasConceptScore W4313305770C2779134260 @default.
- W4313305770 hasConceptScore W4313305770C3008058167 @default.
- W4313305770 hasConceptScore W4313305770C518677369 @default.
- W4313305770 hasConceptScore W4313305770C524204448 @default.
- W4313305770 hasConceptScore W4313305770C71924100 @default.
- W4313305770 hasConceptScore W4313305770C89623803 @default.
- W4313305770 hasLocation W43133057701 @default.
- W4313305770 hasOpenAccess W4313305770 @default.
- W4313305770 hasPrimaryLocation W43133057701 @default.
- W4313305770 hasRelatedWork W2748952813 @default.
- W4313305770 hasRelatedWork W3103289217 @default.
- W4313305770 hasRelatedWork W3106370311 @default.