Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313306320> ?p ?o ?g. }
- W4313306320 endingPage "2673" @default.
- W4313306320 startingPage "2652" @default.
- W4313306320 abstract "Self-driving cars are going to be the main future mode of transportation. However, such systems like, any other cyber-physical system, are vulnerable to attack vectors and uncertainties. As a response, resilience-based approaches are being developed. However, the approaches lack a sound attack model that recognizes the attack vectors and vulnerabilities such a system would have and that does a proper severity analysis of such attacks. Moreover, the existing attack models are too generic. Currently, the domain lacks such specific work pertaining to self-driving cars. Given the technology and architecture of self-driving cars, the field requires a domain-specific attack model. This paper gives a review of the attack models and proposes a domain-specific attack model for self-driving cars. The proposed attack model, severity-based analytical attack model for resilience (SAAMR), provides attack analysis based on existing models. Also, a domain-based severity score for attacks is calculated. Further, the attacks are classified using the decision-tree method and predictions of the type of attacks are given using long short-term memory network." @default.
- W4313306320 created "2023-01-06" @default.
- W4313306320 creator A5004161058 @default.
- W4313306320 creator A5019492006 @default.
- W4313306320 creator A5025984879 @default.
- W4313306320 creator A5062000051 @default.
- W4313306320 creator A5066027699 @default.
- W4313306320 creator A5068624027 @default.
- W4313306320 date "2023-01-01" @default.
- W4313306320 modified "2023-10-14" @default.
- W4313306320 title "Toward Attack Modeling Technique Addressing Resilience in Self-Driving Car" @default.
- W4313306320 cites W1483728528 @default.
- W4313306320 cites W1996655273 @default.
- W4313306320 cites W1998430831 @default.
- W4313306320 cites W2081418638 @default.
- W4313306320 cites W2099474094 @default.
- W4313306320 cites W2134732423 @default.
- W4313306320 cites W2139137304 @default.
- W4313306320 cites W2154486111 @default.
- W4313306320 cites W2156565444 @default.
- W4313306320 cites W2339277944 @default.
- W4313306320 cites W2339802317 @default.
- W4313306320 cites W2342249984 @default.
- W4313306320 cites W2538882647 @default.
- W4313306320 cites W2566247372 @default.
- W4313306320 cites W2593182419 @default.
- W4313306320 cites W2595545394 @default.
- W4313306320 cites W2597561986 @default.
- W4313306320 cites W2597756285 @default.
- W4313306320 cites W2607077291 @default.
- W4313306320 cites W2611814963 @default.
- W4313306320 cites W2735899655 @default.
- W4313306320 cites W2740323046 @default.
- W4313306320 cites W2750632489 @default.
- W4313306320 cites W2757104927 @default.
- W4313306320 cites W2767794223 @default.
- W4313306320 cites W2783137774 @default.
- W4313306320 cites W2786080675 @default.
- W4313306320 cites W2795895107 @default.
- W4313306320 cites W2798302089 @default.
- W4313306320 cites W2806407694 @default.
- W4313306320 cites W2810910757 @default.
- W4313306320 cites W2811114113 @default.
- W4313306320 cites W2883344982 @default.
- W4313306320 cites W2886021805 @default.
- W4313306320 cites W2893107533 @default.
- W4313306320 cites W2904393593 @default.
- W4313306320 cites W2907453639 @default.
- W4313306320 cites W2909262244 @default.
- W4313306320 cites W2914408397 @default.
- W4313306320 cites W2921968294 @default.
- W4313306320 cites W2923760048 @default.
- W4313306320 cites W2935839804 @default.
- W4313306320 cites W2956548091 @default.
- W4313306320 cites W2972676112 @default.
- W4313306320 cites W2986305485 @default.
- W4313306320 cites W2989230094 @default.
- W4313306320 cites W3015176854 @default.
- W4313306320 cites W3027222501 @default.
- W4313306320 cites W3042872195 @default.
- W4313306320 cites W3047375952 @default.
- W4313306320 cites W3087708106 @default.
- W4313306320 cites W3098755434 @default.
- W4313306320 cites W3098881644 @default.
- W4313306320 cites W3135385004 @default.
- W4313306320 cites W3157741111 @default.
- W4313306320 cites W3180551661 @default.
- W4313306320 cites W3183071965 @default.
- W4313306320 cites W3214900114 @default.
- W4313306320 cites W4210984003 @default.
- W4313306320 cites W4289780646 @default.
- W4313306320 cites W4292572069 @default.
- W4313306320 cites W4302774876 @default.
- W4313306320 doi "https://doi.org/10.1109/access.2022.3233424" @default.
- W4313306320 hasPublicationYear "2023" @default.
- W4313306320 type Work @default.
- W4313306320 citedByCount "1" @default.
- W4313306320 countsByYear W43133063202023 @default.
- W4313306320 crossrefType "journal-article" @default.
- W4313306320 hasAuthorship W4313306320A5004161058 @default.
- W4313306320 hasAuthorship W4313306320A5019492006 @default.
- W4313306320 hasAuthorship W4313306320A5025984879 @default.
- W4313306320 hasAuthorship W4313306320A5062000051 @default.
- W4313306320 hasAuthorship W4313306320A5066027699 @default.
- W4313306320 hasAuthorship W4313306320A5068624027 @default.
- W4313306320 hasBestOaLocation W43133063201 @default.
- W4313306320 hasConcept C111919701 @default.
- W4313306320 hasConcept C121332964 @default.
- W4313306320 hasConcept C134306372 @default.
- W4313306320 hasConcept C201307755 @default.
- W4313306320 hasConcept C202444582 @default.
- W4313306320 hasConcept C2779585090 @default.
- W4313306320 hasConcept C33923547 @default.
- W4313306320 hasConcept C36503486 @default.
- W4313306320 hasConcept C38652104 @default.
- W4313306320 hasConcept C41008148 @default.
- W4313306320 hasConcept C48677424 @default.
- W4313306320 hasConcept C65856478 @default.