Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313306326> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4313306326 endingPage "12" @default.
- W4313306326 startingPage "1" @default.
- W4313306326 abstract "Sensor faults are non-negligible issues for soft sensor modeling. However, existing deep learning-based soft sensors are fragile and sensitive when considering sensor faults. To improve the robustness against sensor faults, this article proposes a deep subdomain learning adaptation network (DSLAN) to develop a sensor fault-tolerant soft sensor, which is capable of handling both sensor degradation and sensor failure simultaneously. Primarily, domain adaptation works for process data with sensor degradation in industrial processes. Being founded on the basic structure of deep domain adaptation, a novel subdomain learner is added to automatically learn the subdomain division, enabling DSLAN adaptable to multimode industrial processes. Notably, the subdomain structure of each sample follows a categorical distribution parameterized by output of the subdomain learner. Based on the designed subdomain learner, a new probabilistic local maximum mean discrepancy (PLMMD) is presented to measure the difference in distribution between source and target features. In addition, a generator for failure data imputation is integrated in the framework, making DSLAN handle sensor failure simultaneously. Finally, the Tennessee Eastman (TE) benchmark process and two real industrial processes are used to verify the effectiveness of the proposed method. With the fault tolerance ability, soft sensing technology will take a step toward practical applications." @default.
- W4313306326 created "2023-01-06" @default.
- W4313306326 creator A5020120796 @default.
- W4313306326 creator A5030250813 @default.
- W4313306326 creator A5056102765 @default.
- W4313306326 creator A5057416101 @default.
- W4313306326 creator A5080805825 @default.
- W4313306326 date "2023-01-01" @default.
- W4313306326 modified "2023-10-09" @default.
- W4313306326 title "Deep Subdomain Learning Adaptation Network: A Sensor Fault-Tolerant Soft Sensor for Industrial Processes" @default.
- W4313306326 doi "https://doi.org/10.1109/tnnls.2022.3231849" @default.
- W4313306326 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37015656" @default.
- W4313306326 hasPublicationYear "2023" @default.
- W4313306326 type Work @default.
- W4313306326 citedByCount "1" @default.
- W4313306326 crossrefType "journal-article" @default.
- W4313306326 hasAuthorship W4313306326A5020120796 @default.
- W4313306326 hasAuthorship W4313306326A5030250813 @default.
- W4313306326 hasAuthorship W4313306326A5056102765 @default.
- W4313306326 hasAuthorship W4313306326A5057416101 @default.
- W4313306326 hasAuthorship W4313306326A5080805825 @default.
- W4313306326 hasConcept C104317684 @default.
- W4313306326 hasConcept C111919701 @default.
- W4313306326 hasConcept C115575686 @default.
- W4313306326 hasConcept C119857082 @default.
- W4313306326 hasConcept C120314980 @default.
- W4313306326 hasConcept C124101348 @default.
- W4313306326 hasConcept C152124472 @default.
- W4313306326 hasConcept C152745839 @default.
- W4313306326 hasConcept C154945302 @default.
- W4313306326 hasConcept C172707124 @default.
- W4313306326 hasConcept C185592680 @default.
- W4313306326 hasConcept C24590314 @default.
- W4313306326 hasConcept C2776434776 @default.
- W4313306326 hasConcept C31258907 @default.
- W4313306326 hasConcept C41008148 @default.
- W4313306326 hasConcept C5274069 @default.
- W4313306326 hasConcept C55493867 @default.
- W4313306326 hasConcept C63479239 @default.
- W4313306326 hasConcept C63540848 @default.
- W4313306326 hasConcept C79403827 @default.
- W4313306326 hasConcept C95623464 @default.
- W4313306326 hasConcept C98045186 @default.
- W4313306326 hasConceptScore W4313306326C104317684 @default.
- W4313306326 hasConceptScore W4313306326C111919701 @default.
- W4313306326 hasConceptScore W4313306326C115575686 @default.
- W4313306326 hasConceptScore W4313306326C119857082 @default.
- W4313306326 hasConceptScore W4313306326C120314980 @default.
- W4313306326 hasConceptScore W4313306326C124101348 @default.
- W4313306326 hasConceptScore W4313306326C152124472 @default.
- W4313306326 hasConceptScore W4313306326C152745839 @default.
- W4313306326 hasConceptScore W4313306326C154945302 @default.
- W4313306326 hasConceptScore W4313306326C172707124 @default.
- W4313306326 hasConceptScore W4313306326C185592680 @default.
- W4313306326 hasConceptScore W4313306326C24590314 @default.
- W4313306326 hasConceptScore W4313306326C2776434776 @default.
- W4313306326 hasConceptScore W4313306326C31258907 @default.
- W4313306326 hasConceptScore W4313306326C41008148 @default.
- W4313306326 hasConceptScore W4313306326C5274069 @default.
- W4313306326 hasConceptScore W4313306326C55493867 @default.
- W4313306326 hasConceptScore W4313306326C63479239 @default.
- W4313306326 hasConceptScore W4313306326C63540848 @default.
- W4313306326 hasConceptScore W4313306326C79403827 @default.
- W4313306326 hasConceptScore W4313306326C95623464 @default.
- W4313306326 hasConceptScore W4313306326C98045186 @default.
- W4313306326 hasLocation W43133063261 @default.
- W4313306326 hasLocation W43133063262 @default.
- W4313306326 hasOpenAccess W4313306326 @default.
- W4313306326 hasPrimaryLocation W43133063261 @default.
- W4313306326 hasRelatedWork W1483135751 @default.
- W4313306326 hasRelatedWork W1588908779 @default.
- W4313306326 hasRelatedWork W1690640450 @default.
- W4313306326 hasRelatedWork W2027487876 @default.
- W4313306326 hasRelatedWork W2040956888 @default.
- W4313306326 hasRelatedWork W2110958720 @default.
- W4313306326 hasRelatedWork W2130594209 @default.
- W4313306326 hasRelatedWork W3102446781 @default.
- W4313306326 hasRelatedWork W3200162441 @default.
- W4313306326 hasRelatedWork W2725994526 @default.
- W4313306326 isParatext "false" @default.
- W4313306326 isRetracted "false" @default.
- W4313306326 workType "article" @default.