Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313306364> ?p ?o ?g. }
- W4313306364 endingPage "78" @default.
- W4313306364 startingPage "66" @default.
- W4313306364 abstract "Abstract Clothing image in the e-commerce industry plays an important role in providing customers with information. This paper divides clothing images into two groups: pure clothing images and dressed clothing images. Targeting small and medium-sized clothing companies or merchants, it compares traditional machine learning and deep learning models to determine suitable models for each group. For pure clothing images, the HOG+SVM algorithm with the Gaussian kernel function obtains the highest classification accuracy of 91.32% as compared to the Small VGG network. For dressed clothing images, the CNN model obtains a higher accuracy than the HOG+SVM algorithm, with the highest accuracy rate of 69.78% for the Small VGG network. Therefore, for end-users with only ordinary computing processors, it is recommended to apply the traditional machine learning algorithm HOG+SVM to classify pure clothing images. The classification of dressed clothing images is performed using a more efficient and less computationally intensive lightweight model, such as the Small VGG network." @default.
- W4313306364 created "2023-01-06" @default.
- W4313306364 creator A5053084085 @default.
- W4313306364 creator A5062194603 @default.
- W4313306364 creator A5072382820 @default.
- W4313306364 creator A5076121175 @default.
- W4313306364 creator A5085655954 @default.
- W4313306364 date "2022-10-01" @default.
- W4313306364 modified "2023-09-25" @default.
- W4313306364 title "Analysis of Clothing Image Classification Models: A Comparison Study between Traditional Machine Learning and Deep Learning Models" @default.
- W4313306364 cites W123584468 @default.
- W4313306364 cites W1483406200 @default.
- W4313306364 cites W1504031982 @default.
- W4313306364 cites W2047809566 @default.
- W4313306364 cites W2100142570 @default.
- W4313306364 cites W2151103935 @default.
- W4313306364 cites W2159498975 @default.
- W4313306364 cites W2159551006 @default.
- W4313306364 cites W2200092826 @default.
- W4313306364 cites W2410358280 @default.
- W4313306364 cites W2462264630 @default.
- W4313306364 cites W2463470988 @default.
- W4313306364 cites W2471768434 @default.
- W4313306364 cites W2527800741 @default.
- W4313306364 cites W2551884317 @default.
- W4313306364 cites W2554078916 @default.
- W4313306364 cites W2564734887 @default.
- W4313306364 cites W2573562142 @default.
- W4313306364 cites W2579348194 @default.
- W4313306364 cites W2593792475 @default.
- W4313306364 cites W2768915870 @default.
- W4313306364 cites W2783973676 @default.
- W4313306364 cites W2889570702 @default.
- W4313306364 cites W2932272460 @default.
- W4313306364 cites W2963745697 @default.
- W4313306364 cites W3012456877 @default.
- W4313306364 cites W3035414587 @default.
- W4313306364 cites W3043144974 @default.
- W4313306364 cites W3095285170 @default.
- W4313306364 cites W3101776966 @default.
- W4313306364 cites W3129026844 @default.
- W4313306364 cites W3135401577 @default.
- W4313306364 cites W3137244140 @default.
- W4313306364 cites W3153251248 @default.
- W4313306364 cites W3216574334 @default.
- W4313306364 cites W4230060147 @default.
- W4313306364 cites W4285444772 @default.
- W4313306364 doi "https://doi.org/10.2478/ftee-2022-0046" @default.
- W4313306364 hasPublicationYear "2022" @default.
- W4313306364 type Work @default.
- W4313306364 citedByCount "1" @default.
- W4313306364 countsByYear W43133063642023 @default.
- W4313306364 crossrefType "journal-article" @default.
- W4313306364 hasAuthorship W4313306364A5053084085 @default.
- W4313306364 hasAuthorship W4313306364A5062194603 @default.
- W4313306364 hasAuthorship W4313306364A5072382820 @default.
- W4313306364 hasAuthorship W4313306364A5076121175 @default.
- W4313306364 hasAuthorship W4313306364A5085655954 @default.
- W4313306364 hasBestOaLocation W43133063641 @default.
- W4313306364 hasConcept C108583219 @default.
- W4313306364 hasConcept C114614502 @default.
- W4313306364 hasConcept C115961682 @default.
- W4313306364 hasConcept C119857082 @default.
- W4313306364 hasConcept C12267149 @default.
- W4313306364 hasConcept C153180895 @default.
- W4313306364 hasConcept C154945302 @default.
- W4313306364 hasConcept C166957645 @default.
- W4313306364 hasConcept C205649164 @default.
- W4313306364 hasConcept C31972630 @default.
- W4313306364 hasConcept C33923547 @default.
- W4313306364 hasConcept C41008148 @default.
- W4313306364 hasConcept C530175646 @default.
- W4313306364 hasConcept C74193536 @default.
- W4313306364 hasConceptScore W4313306364C108583219 @default.
- W4313306364 hasConceptScore W4313306364C114614502 @default.
- W4313306364 hasConceptScore W4313306364C115961682 @default.
- W4313306364 hasConceptScore W4313306364C119857082 @default.
- W4313306364 hasConceptScore W4313306364C12267149 @default.
- W4313306364 hasConceptScore W4313306364C153180895 @default.
- W4313306364 hasConceptScore W4313306364C154945302 @default.
- W4313306364 hasConceptScore W4313306364C166957645 @default.
- W4313306364 hasConceptScore W4313306364C205649164 @default.
- W4313306364 hasConceptScore W4313306364C31972630 @default.
- W4313306364 hasConceptScore W4313306364C33923547 @default.
- W4313306364 hasConceptScore W4313306364C41008148 @default.
- W4313306364 hasConceptScore W4313306364C530175646 @default.
- W4313306364 hasConceptScore W4313306364C74193536 @default.
- W4313306364 hasIssue "5" @default.
- W4313306364 hasLocation W43133063641 @default.
- W4313306364 hasOpenAccess W4313306364 @default.
- W4313306364 hasPrimaryLocation W43133063641 @default.
- W4313306364 hasRelatedWork W2136184105 @default.
- W4313306364 hasRelatedWork W3013515612 @default.
- W4313306364 hasRelatedWork W4223943233 @default.
- W4313306364 hasRelatedWork W4225161397 @default.
- W4313306364 hasRelatedWork W4312200629 @default.
- W4313306364 hasRelatedWork W4360585206 @default.
- W4313306364 hasRelatedWork W4364306694 @default.