Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313306401> ?p ?o ?g. }
- W4313306401 endingPage "18" @default.
- W4313306401 startingPage "1" @default.
- W4313306401 abstract "This article presents a novel log abstraction framework based on neural open information extraction (OpenIE) and dynamic word embedding principles. Though various log parsing frameworks are proposed in the literature, the existing frameworks are modeled on predefined heuristics or auto-regressive methodologies that work well in offline scenarios. However, these frameworks are less suitable for dynamic self-adaptive systems, such as the Internet of Things (IoT), where the log outputs have diverse contextual variations and disparate time irregularities. Therefore, it is essential to move away from these traditional approaches and develop a systematic model that can effectively analyze log outputs in real-time and increase the system up-time of IoT networks so that they are almost always available. To address these needs, the proposed framework used OpenIE along with term frequency/inverse document frequency (TF/IDF) vectorization for constructing a set of relational triples (aka triple-sets). Additionally, a dynamic pretrained encoder–decoder architecture is utilized to imbibe the positional and contextualized information in its resultant outputs. The adopted methodology has enabled the proposed framework to extract richer word representations with dynamic contextualization of time-sensitive event logs to enhance further downstream activities, such as failure prediction and prognostic analysis of IoT networks. The proposed framework is evaluated on the system event log traces accumulated from a long range wide-area network (LoRaWAN) IoT gateway to proactively determine the probable causes of its various failure scenarios. Additionally, the study also provided a comparative analysis of its mathematical representations with that of the current state-of-the-art (SOTA) approaches to project the advantages and benefits of the proposed model, particularly from its data analytics standpoint." @default.
- W4313306401 created "2023-01-06" @default.
- W4313306401 creator A5039761470 @default.
- W4313306401 creator A5055879645 @default.
- W4313306401 creator A5077465843 @default.
- W4313306401 creator A5078154231 @default.
- W4313306401 date "2023-01-01" @default.
- W4313306401 modified "2023-09-30" @default.
- W4313306401 title "An Online Parsing Framework for Semistructured Streaming System Logs of Internet of Things Systems" @default.
- W4313306401 cites W2136922540 @default.
- W4313306401 cites W2274346623 @default.
- W4313306401 cites W2284250673 @default.
- W4313306401 cites W2517358494 @default.
- W4313306401 cites W2526127738 @default.
- W4313306401 cites W2527994611 @default.
- W4313306401 cites W2536393303 @default.
- W4313306401 cites W2572336529 @default.
- W4313306401 cites W2582208206 @default.
- W4313306401 cites W2585367509 @default.
- W4313306401 cites W2593197694 @default.
- W4313306401 cites W2741271950 @default.
- W4313306401 cites W2754665629 @default.
- W4313306401 cites W2762028850 @default.
- W4313306401 cites W2767094836 @default.
- W4313306401 cites W2810987158 @default.
- W4313306401 cites W2889250693 @default.
- W4313306401 cites W2895810692 @default.
- W4313306401 cites W2897509371 @default.
- W4313306401 cites W2900353077 @default.
- W4313306401 cites W2904204195 @default.
- W4313306401 cites W2921142294 @default.
- W4313306401 cites W2927219253 @default.
- W4313306401 cites W2947928605 @default.
- W4313306401 cites W2955403049 @default.
- W4313306401 cites W2962870032 @default.
- W4313306401 cites W2963161123 @default.
- W4313306401 cites W2963999143 @default.
- W4313306401 cites W2964113583 @default.
- W4313306401 cites W2964959375 @default.
- W4313306401 cites W2981089724 @default.
- W4313306401 cites W2995616906 @default.
- W4313306401 cites W2996262564 @default.
- W4313306401 cites W3003705911 @default.
- W4313306401 cites W3004042885 @default.
- W4313306401 cites W3006424452 @default.
- W4313306401 cites W3007466645 @default.
- W4313306401 cites W3007523155 @default.
- W4313306401 cites W3018898752 @default.
- W4313306401 cites W3020931524 @default.
- W4313306401 cites W3034878914 @default.
- W4313306401 cites W3089662691 @default.
- W4313306401 cites W3090066802 @default.
- W4313306401 cites W3095711016 @default.
- W4313306401 cites W3096627906 @default.
- W4313306401 cites W3120159330 @default.
- W4313306401 cites W3129166376 @default.
- W4313306401 cites W3135970112 @default.
- W4313306401 cites W3151685851 @default.
- W4313306401 cites W3173672122 @default.
- W4313306401 cites W38873404 @default.
- W4313306401 doi "https://doi.org/10.1109/ojim.2022.3232650" @default.
- W4313306401 hasPublicationYear "2023" @default.
- W4313306401 type Work @default.
- W4313306401 citedByCount "0" @default.
- W4313306401 crossrefType "journal-article" @default.
- W4313306401 hasAuthorship W4313306401A5039761470 @default.
- W4313306401 hasAuthorship W4313306401A5055879645 @default.
- W4313306401 hasAuthorship W4313306401A5077465843 @default.
- W4313306401 hasAuthorship W4313306401A5078154231 @default.
- W4313306401 hasBestOaLocation W43133064011 @default.
- W4313306401 hasConcept C108010975 @default.
- W4313306401 hasConcept C111472728 @default.
- W4313306401 hasConcept C119857082 @default.
- W4313306401 hasConcept C121332964 @default.
- W4313306401 hasConcept C124101348 @default.
- W4313306401 hasConcept C124304363 @default.
- W4313306401 hasConcept C138885662 @default.
- W4313306401 hasConcept C154945302 @default.
- W4313306401 hasConcept C177264268 @default.
- W4313306401 hasConcept C186644900 @default.
- W4313306401 hasConcept C199360897 @default.
- W4313306401 hasConcept C23123220 @default.
- W4313306401 hasConcept C2779662365 @default.
- W4313306401 hasConcept C41008148 @default.
- W4313306401 hasConcept C41895202 @default.
- W4313306401 hasConcept C62520636 @default.
- W4313306401 hasConcept C6557445 @default.
- W4313306401 hasConcept C86803240 @default.
- W4313306401 hasConcept C90805587 @default.
- W4313306401 hasConceptScore W4313306401C108010975 @default.
- W4313306401 hasConceptScore W4313306401C111472728 @default.
- W4313306401 hasConceptScore W4313306401C119857082 @default.
- W4313306401 hasConceptScore W4313306401C121332964 @default.
- W4313306401 hasConceptScore W4313306401C124101348 @default.
- W4313306401 hasConceptScore W4313306401C124304363 @default.
- W4313306401 hasConceptScore W4313306401C138885662 @default.
- W4313306401 hasConceptScore W4313306401C154945302 @default.
- W4313306401 hasConceptScore W4313306401C177264268 @default.