Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313306417> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4313306417 abstract "<p>Financial time series prediction, a growing research topic, has attracted considerable interest from scholars, and several approaches have been developed. Among them, decomposition-based methods have achieved promising results. Most decomposition-based methods approximate a single function, which is insufficient for obtaining accurate results. Moreover, most existing researches have concentrated on one-step-ahead forecasting that prevents stock market investors from arriving at the best decisions for the future. This study proposes two novel methods for multi-step-ahead stock price prediction based on the issues outlined. DCT-MFRFNN, a method based on discrete cosine transform (DCT) and multi-functional recurrent fuzzy neural network (MFRFNN), uses DCT to reduce fluctuations in the time series and simplify its structure and MFRFNN to predict the stock price. VMD-MFRFNN, an approach based on variational mode decomposition (VMD) and MFRFNN, brings together their advantages. VMD-MFRFNN consists of two phases. The input signal is decomposed to several IMFs using VMD in the decomposition phase. In the prediction and reconstruction phase, each of the IMFs is given to a separate MFRFNN for prediction, and predicted signals are summed to reconstruct the output. Three financial time series, including Hang Seng Index (HSI), Shanghai Stock Exchange (SSE), and Standard & Poor's 500 Index (SPX), are used for the evaluation of the proposed methods. Experimental results indicate that VMD-MFRFNN surpasses other state-of-the-art methods. VMD-MFRFNN, on average, shows 35.93%, 24.88%, and 34.59% decreases in RMSE from the second-best model for HSI, SSE, and SPX, respectively. Also, DCT-MFRFNN outperforms MFRFNN in all experiments.</p>" @default.
- W4313306417 created "2023-01-06" @default.
- W4313306417 creator A5023442370 @default.
- W4313306417 creator A5079893426 @default.
- W4313306417 date "2022-12-30" @default.
- W4313306417 modified "2023-10-16" @default.
- W4313306417 title "Multi-step-ahead Stock Price Prediction Using Recurrent Fuzzy Neural Network and Variational Mode Decomposition" @default.
- W4313306417 doi "https://doi.org/10.36227/techrxiv.21780212" @default.
- W4313306417 hasPublicationYear "2022" @default.
- W4313306417 type Work @default.
- W4313306417 citedByCount "5" @default.
- W4313306417 countsByYear W43133064172023 @default.
- W4313306417 crossrefType "posted-content" @default.
- W4313306417 hasAuthorship W4313306417A5023442370 @default.
- W4313306417 hasAuthorship W4313306417A5079893426 @default.
- W4313306417 hasBestOaLocation W43133064171 @default.
- W4313306417 hasConcept C10138342 @default.
- W4313306417 hasConcept C106131492 @default.
- W4313306417 hasConcept C11413529 @default.
- W4313306417 hasConcept C115961682 @default.
- W4313306417 hasConcept C124101348 @default.
- W4313306417 hasConcept C127413603 @default.
- W4313306417 hasConcept C143724316 @default.
- W4313306417 hasConcept C149782125 @default.
- W4313306417 hasConcept C151730666 @default.
- W4313306417 hasConcept C154945302 @default.
- W4313306417 hasConcept C162324750 @default.
- W4313306417 hasConcept C200870193 @default.
- W4313306417 hasConcept C204036174 @default.
- W4313306417 hasConcept C2221639 @default.
- W4313306417 hasConcept C25570617 @default.
- W4313306417 hasConcept C2780299701 @default.
- W4313306417 hasConcept C2780762169 @default.
- W4313306417 hasConcept C31972630 @default.
- W4313306417 hasConcept C33923547 @default.
- W4313306417 hasConcept C41008148 @default.
- W4313306417 hasConcept C50644808 @default.
- W4313306417 hasConcept C58166 @default.
- W4313306417 hasConcept C78519656 @default.
- W4313306417 hasConcept C86803240 @default.
- W4313306417 hasConcept C88389905 @default.
- W4313306417 hasConceptScore W4313306417C10138342 @default.
- W4313306417 hasConceptScore W4313306417C106131492 @default.
- W4313306417 hasConceptScore W4313306417C11413529 @default.
- W4313306417 hasConceptScore W4313306417C115961682 @default.
- W4313306417 hasConceptScore W4313306417C124101348 @default.
- W4313306417 hasConceptScore W4313306417C127413603 @default.
- W4313306417 hasConceptScore W4313306417C143724316 @default.
- W4313306417 hasConceptScore W4313306417C149782125 @default.
- W4313306417 hasConceptScore W4313306417C151730666 @default.
- W4313306417 hasConceptScore W4313306417C154945302 @default.
- W4313306417 hasConceptScore W4313306417C162324750 @default.
- W4313306417 hasConceptScore W4313306417C200870193 @default.
- W4313306417 hasConceptScore W4313306417C204036174 @default.
- W4313306417 hasConceptScore W4313306417C2221639 @default.
- W4313306417 hasConceptScore W4313306417C25570617 @default.
- W4313306417 hasConceptScore W4313306417C2780299701 @default.
- W4313306417 hasConceptScore W4313306417C2780762169 @default.
- W4313306417 hasConceptScore W4313306417C31972630 @default.
- W4313306417 hasConceptScore W4313306417C33923547 @default.
- W4313306417 hasConceptScore W4313306417C41008148 @default.
- W4313306417 hasConceptScore W4313306417C50644808 @default.
- W4313306417 hasConceptScore W4313306417C58166 @default.
- W4313306417 hasConceptScore W4313306417C78519656 @default.
- W4313306417 hasConceptScore W4313306417C86803240 @default.
- W4313306417 hasConceptScore W4313306417C88389905 @default.
- W4313306417 hasLocation W43133064171 @default.
- W4313306417 hasLocation W43133064172 @default.
- W4313306417 hasLocation W43133064173 @default.
- W4313306417 hasOpenAccess W4313306417 @default.
- W4313306417 hasPrimaryLocation W43133064171 @default.
- W4313306417 hasRelatedWork W2064595487 @default.
- W4313306417 hasRelatedWork W2178917025 @default.
- W4313306417 hasRelatedWork W2284857756 @default.
- W4313306417 hasRelatedWork W2766000812 @default.
- W4313306417 hasRelatedWork W2805041177 @default.
- W4313306417 hasRelatedWork W2947905778 @default.
- W4313306417 hasRelatedWork W2980932766 @default.
- W4313306417 hasRelatedWork W3044522029 @default.
- W4313306417 hasRelatedWork W2183216386 @default.
- W4313306417 hasRelatedWork W3188052561 @default.
- W4313306417 isParatext "false" @default.
- W4313306417 isRetracted "false" @default.
- W4313306417 workType "article" @default.