Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313306972> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4313306972 abstract "Computer-vision-based rust detection is a promising way to enhance the inspection efficiency and accuracy for the steel components of infrastructures. Existing automatic rust detection methods may fail to differentiate and extract different types of rust corrosion, and may require an enormous amount of precisely annotated training data. To resolve these issues, this paper proposes a novel rust segmentation approach based on the Gaussian mixture model (GMM) and superpixel segmentation. The GMM model learns the feature distribution of different degrees of rustiness in the HSV color space and predicts the rustiness probability of each pixel in the input image. The SLIC algorithm is exploited for superpixel segmentation on the input images. Rust/non-rust classification is conducted on the superpixels according to the mean of rustiness probabilities in each superpixel with a threshold generated by the OTSU algorithm. Finally, rust segmentation masks are produced according to the superpixel classification results. The proposed rust segmentation approach simplifies the preprocessing phase and takes into consideration the characteristics of rust areas with different rustiness degrees and the correlation of adjacent pixels. Experimental results show that the proposed approach is robust to the variation of rust features and can generate consistent segmentation results at the boundaries of rusted areas, while only requiring a relatively small training data set. The average processing time for an 120×88 image is 24.283 ms, which indicates that the proposed approach is promising to achieve real-time processing in real-world applications. Our code is available at: https://github.com/lyzx2001/GMM-SLIC-RustDetction" @default.
- W4313306972 created "2023-01-06" @default.
- W4313306972 creator A5015105154 @default.
- W4313306972 creator A5019121945 @default.
- W4313306972 creator A5020469793 @default.
- W4313306972 creator A5022722579 @default.
- W4313306972 creator A5031792794 @default.
- W4313306972 creator A5056386853 @default.
- W4313306972 creator A5087494824 @default.
- W4313306972 date "2022-12-10" @default.
- W4313306972 modified "2023-10-04" @default.
- W4313306972 title "Automatic Rust Segmentation Using Gaussian Mixture Model and Superpixel Segmentation" @default.
- W4313306972 cites W1694361758 @default.
- W4313306972 cites W2102593897 @default.
- W4313306972 cites W2133059825 @default.
- W4313306972 cites W2468194593 @default.
- W4313306972 cites W2514440090 @default.
- W4313306972 cites W2902291586 @default.
- W4313306972 cites W3038612758 @default.
- W4313306972 cites W3104156061 @default.
- W4313306972 cites W3117257355 @default.
- W4313306972 cites W3127625208 @default.
- W4313306972 cites W3134528969 @default.
- W4313306972 cites W3212880185 @default.
- W4313306972 cites W4285814485 @default.
- W4313306972 doi "https://doi.org/10.1109/hdis56859.2022.9991284" @default.
- W4313306972 hasPublicationYear "2022" @default.
- W4313306972 type Work @default.
- W4313306972 citedByCount "2" @default.
- W4313306972 countsByYear W43133069722023 @default.
- W4313306972 crossrefType "proceedings-article" @default.
- W4313306972 hasAuthorship W4313306972A5015105154 @default.
- W4313306972 hasAuthorship W4313306972A5019121945 @default.
- W4313306972 hasAuthorship W4313306972A5020469793 @default.
- W4313306972 hasAuthorship W4313306972A5022722579 @default.
- W4313306972 hasAuthorship W4313306972A5031792794 @default.
- W4313306972 hasAuthorship W4313306972A5056386853 @default.
- W4313306972 hasAuthorship W4313306972A5087494824 @default.
- W4313306972 hasConcept C124504099 @default.
- W4313306972 hasConcept C153180895 @default.
- W4313306972 hasConcept C154945302 @default.
- W4313306972 hasConcept C197781089 @default.
- W4313306972 hasConcept C199360897 @default.
- W4313306972 hasConcept C31972630 @default.
- W4313306972 hasConcept C41008148 @default.
- W4313306972 hasConcept C61224824 @default.
- W4313306972 hasConcept C65885262 @default.
- W4313306972 hasConcept C89600930 @default.
- W4313306972 hasConceptScore W4313306972C124504099 @default.
- W4313306972 hasConceptScore W4313306972C153180895 @default.
- W4313306972 hasConceptScore W4313306972C154945302 @default.
- W4313306972 hasConceptScore W4313306972C197781089 @default.
- W4313306972 hasConceptScore W4313306972C199360897 @default.
- W4313306972 hasConceptScore W4313306972C31972630 @default.
- W4313306972 hasConceptScore W4313306972C41008148 @default.
- W4313306972 hasConceptScore W4313306972C61224824 @default.
- W4313306972 hasConceptScore W4313306972C65885262 @default.
- W4313306972 hasConceptScore W4313306972C89600930 @default.
- W4313306972 hasLocation W43133069721 @default.
- W4313306972 hasOpenAccess W4313306972 @default.
- W4313306972 hasPrimaryLocation W43133069721 @default.
- W4313306972 hasRelatedWork W1522908000 @default.
- W4313306972 hasRelatedWork W1669643531 @default.
- W4313306972 hasRelatedWork W2069711651 @default.
- W4313306972 hasRelatedWork W2117664411 @default.
- W4313306972 hasRelatedWork W2117933325 @default.
- W4313306972 hasRelatedWork W2159066190 @default.
- W4313306972 hasRelatedWork W2171698391 @default.
- W4313306972 hasRelatedWork W2558375057 @default.
- W4313306972 hasRelatedWork W2739874619 @default.
- W4313306972 hasRelatedWork W1967061043 @default.
- W4313306972 isParatext "false" @default.
- W4313306972 isRetracted "false" @default.
- W4313306972 workType "article" @default.