Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313307048> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4313307048 abstract "When committing the time and resources to a startup idea, entrepreneurs must consider several aspects. Analyzing the thoughts of people about emergent businesses from popular social networking platforms can contribute positively in the decision making process of investors. Statistical methods are widely experienced in generation of business insights and estimation of future growth by determining a general trend in opinion of users. However, intelligent computing for efficient and affective sentiment analysis is still challenging and capture the interest of researchers. In this paper, we have aimed at using natural language processing to understand the attitude of twitter users about innovative business ideas and latest technologies in their surroundings. We have proposed an ensemble classifier to allow users to investigate the sentiment associated with a topic of interest in real time using data visualization. The objective of this research is to explore the abilities of machine learning algorithms in producing maximum accuracy on translating raw tweets into useful judgements through sentiment analysis. Our proposed application classifies positive and negative emotions taken from sentiment140 dataset. To assess the output of ensemble classifier, we have trained Support Vector Machine (SVM), Naive Bayes, and Long Short-Term Memory (LSTM) neural networks on a defined set of features. While, experimental results show that our methodology is more accurate than other known methods and may be used by entrepreneurs for improving business analytics. This paper also proposes a comparison among the current methodologies of sentiment analysis using artificial intelligence." @default.
- W4313307048 created "2023-01-06" @default.
- W4313307048 creator A5042821221 @default.
- W4313307048 creator A5061198813 @default.
- W4313307048 creator A5064917134 @default.
- W4313307048 date "2022-08-16" @default.
- W4313307048 modified "2023-10-05" @default.
- W4313307048 title "Sentiment Analysis using Ensemble Classifier for Entrepreneurs based on Twitter Analytics" @default.
- W4313307048 cites W2012397029 @default.
- W4313307048 cites W2048741659 @default.
- W4313307048 cites W2149684865 @default.
- W4313307048 cites W2557455107 @default.
- W4313307048 cites W2770439076 @default.
- W4313307048 cites W2806345781 @default.
- W4313307048 cites W2911955591 @default.
- W4313307048 cites W2921586637 @default.
- W4313307048 cites W2921899828 @default.
- W4313307048 cites W2946565880 @default.
- W4313307048 cites W2946870453 @default.
- W4313307048 cites W2995990012 @default.
- W4313307048 cites W3022229613 @default.
- W4313307048 cites W3195446119 @default.
- W4313307048 doi "https://doi.org/10.1109/ibcast54850.2022.9990360" @default.
- W4313307048 hasPublicationYear "2022" @default.
- W4313307048 type Work @default.
- W4313307048 citedByCount "0" @default.
- W4313307048 crossrefType "proceedings-article" @default.
- W4313307048 hasAuthorship W4313307048A5042821221 @default.
- W4313307048 hasAuthorship W4313307048A5061198813 @default.
- W4313307048 hasAuthorship W4313307048A5064917134 @default.
- W4313307048 hasConcept C119857082 @default.
- W4313307048 hasConcept C12267149 @default.
- W4313307048 hasConcept C124101348 @default.
- W4313307048 hasConcept C154945302 @default.
- W4313307048 hasConcept C2522767166 @default.
- W4313307048 hasConcept C2767350 @default.
- W4313307048 hasConcept C41008148 @default.
- W4313307048 hasConcept C52001869 @default.
- W4313307048 hasConcept C66402592 @default.
- W4313307048 hasConcept C75684735 @default.
- W4313307048 hasConcept C79158427 @default.
- W4313307048 hasConcept C84525736 @default.
- W4313307048 hasConcept C95623464 @default.
- W4313307048 hasConceptScore W4313307048C119857082 @default.
- W4313307048 hasConceptScore W4313307048C12267149 @default.
- W4313307048 hasConceptScore W4313307048C124101348 @default.
- W4313307048 hasConceptScore W4313307048C154945302 @default.
- W4313307048 hasConceptScore W4313307048C2522767166 @default.
- W4313307048 hasConceptScore W4313307048C2767350 @default.
- W4313307048 hasConceptScore W4313307048C41008148 @default.
- W4313307048 hasConceptScore W4313307048C52001869 @default.
- W4313307048 hasConceptScore W4313307048C66402592 @default.
- W4313307048 hasConceptScore W4313307048C75684735 @default.
- W4313307048 hasConceptScore W4313307048C79158427 @default.
- W4313307048 hasConceptScore W4313307048C84525736 @default.
- W4313307048 hasConceptScore W4313307048C95623464 @default.
- W4313307048 hasLocation W43133070481 @default.
- W4313307048 hasOpenAccess W4313307048 @default.
- W4313307048 hasPrimaryLocation W43133070481 @default.
- W4313307048 hasRelatedWork W2771255398 @default.
- W4313307048 hasRelatedWork W2930428186 @default.
- W4313307048 hasRelatedWork W2966195860 @default.
- W4313307048 hasRelatedWork W3120363735 @default.
- W4313307048 hasRelatedWork W3125536479 @default.
- W4313307048 hasRelatedWork W3200027047 @default.
- W4313307048 hasRelatedWork W4214820172 @default.
- W4313307048 hasRelatedWork W4367856707 @default.
- W4313307048 hasRelatedWork W4385770464 @default.
- W4313307048 hasRelatedWork W4386984454 @default.
- W4313307048 isParatext "false" @default.
- W4313307048 isRetracted "false" @default.
- W4313307048 workType "article" @default.