Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313307409> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4313307409 abstract "Courts are generating a large amount of data as legal proceedings. In Pakistan, the ratio of cases that are registered every year and the judgments made is very high mainly due to the time it takes to prepare for a trial. Text Summarization is one of the applications of Natural Language Processing (NLP) that can be used to provide a brief overview of the judgment to both the lawyers and the judges which will help save a lot of their precious time, and hence speedy justice can be provided to the people. Transformer-based models in NLP are a benchmark in solving sequence-to-sequence modeling problems. A downside of these powerful machines is that training a model demands high computation power. We have shown that fine-tuning a pre-trained legal Longformer Encoder-Decoder (LED) transformer model on a downstream task provides better accuracy scores on Australian judgments and our prepared datasets from the Supreme Court of Pakistan (SCP) and Islamabad High Court of Pakistan (IHCP). ROUGE, a commonly used metric in sequence modeling, is used to evaluate the trained model. For the Australian judgments, our approach exhibited a significant improvement for ROUGE-1 and ROUGE-2 scores of 37.97% and 20.04%. For our prepared dataset, our approach produced a ROUGE-1 score of 53.11%, a ROUGE-2 score of 32.12%, and a ROUGE-L score of 34.09%." @default.
- W4313307409 created "2023-01-06" @default.
- W4313307409 creator A5003304863 @default.
- W4313307409 creator A5024120099 @default.
- W4313307409 creator A5042313787 @default.
- W4313307409 creator A5060803247 @default.
- W4313307409 creator A5065213109 @default.
- W4313307409 date "2022-11-16" @default.
- W4313307409 modified "2023-09-28" @default.
- W4313307409 title "Text Summarization from Judicial Records using Deep Neural Machines" @default.
- W4313307409 cites W2902017239 @default.
- W4313307409 cites W2938146102 @default.
- W4313307409 cites W2964656262 @default.
- W4313307409 cites W2969376565 @default.
- W4313307409 cites W2982439297 @default.
- W4313307409 cites W2990143372 @default.
- W4313307409 cites W3080114912 @default.
- W4313307409 cites W3176319847 @default.
- W4313307409 doi "https://doi.org/10.1109/iceccme55909.2022.9987795" @default.
- W4313307409 hasPublicationYear "2022" @default.
- W4313307409 type Work @default.
- W4313307409 citedByCount "0" @default.
- W4313307409 crossrefType "proceedings-article" @default.
- W4313307409 hasAuthorship W4313307409A5003304863 @default.
- W4313307409 hasAuthorship W4313307409A5024120099 @default.
- W4313307409 hasAuthorship W4313307409A5042313787 @default.
- W4313307409 hasAuthorship W4313307409A5060803247 @default.
- W4313307409 hasAuthorship W4313307409A5065213109 @default.
- W4313307409 hasConcept C108583219 @default.
- W4313307409 hasConcept C111919701 @default.
- W4313307409 hasConcept C118505674 @default.
- W4313307409 hasConcept C119599485 @default.
- W4313307409 hasConcept C119857082 @default.
- W4313307409 hasConcept C127413603 @default.
- W4313307409 hasConcept C13280743 @default.
- W4313307409 hasConcept C144133560 @default.
- W4313307409 hasConcept C148524875 @default.
- W4313307409 hasConcept C154945302 @default.
- W4313307409 hasConcept C162853370 @default.
- W4313307409 hasConcept C165801399 @default.
- W4313307409 hasConcept C170858558 @default.
- W4313307409 hasConcept C185798385 @default.
- W4313307409 hasConcept C204321447 @default.
- W4313307409 hasConcept C205649164 @default.
- W4313307409 hasConcept C41008148 @default.
- W4313307409 hasConcept C66322947 @default.
- W4313307409 hasConcept C7888048 @default.
- W4313307409 hasConcept C86251818 @default.
- W4313307409 hasConceptScore W4313307409C108583219 @default.
- W4313307409 hasConceptScore W4313307409C111919701 @default.
- W4313307409 hasConceptScore W4313307409C118505674 @default.
- W4313307409 hasConceptScore W4313307409C119599485 @default.
- W4313307409 hasConceptScore W4313307409C119857082 @default.
- W4313307409 hasConceptScore W4313307409C127413603 @default.
- W4313307409 hasConceptScore W4313307409C13280743 @default.
- W4313307409 hasConceptScore W4313307409C144133560 @default.
- W4313307409 hasConceptScore W4313307409C148524875 @default.
- W4313307409 hasConceptScore W4313307409C154945302 @default.
- W4313307409 hasConceptScore W4313307409C162853370 @default.
- W4313307409 hasConceptScore W4313307409C165801399 @default.
- W4313307409 hasConceptScore W4313307409C170858558 @default.
- W4313307409 hasConceptScore W4313307409C185798385 @default.
- W4313307409 hasConceptScore W4313307409C204321447 @default.
- W4313307409 hasConceptScore W4313307409C205649164 @default.
- W4313307409 hasConceptScore W4313307409C41008148 @default.
- W4313307409 hasConceptScore W4313307409C66322947 @default.
- W4313307409 hasConceptScore W4313307409C7888048 @default.
- W4313307409 hasConceptScore W4313307409C86251818 @default.
- W4313307409 hasLocation W43133074091 @default.
- W4313307409 hasOpenAccess W4313307409 @default.
- W4313307409 hasPrimaryLocation W43133074091 @default.
- W4313307409 hasRelatedWork W2765476116 @default.
- W4313307409 hasRelatedWork W3115006989 @default.
- W4313307409 hasRelatedWork W3154941836 @default.
- W4313307409 hasRelatedWork W4221140906 @default.
- W4313307409 hasRelatedWork W4242978449 @default.
- W4313307409 hasRelatedWork W4294031299 @default.
- W4313307409 hasRelatedWork W4321365483 @default.
- W4313307409 hasRelatedWork W4360986142 @default.
- W4313307409 hasRelatedWork W4362570706 @default.
- W4313307409 hasRelatedWork W4366964320 @default.
- W4313307409 isParatext "false" @default.
- W4313307409 isRetracted "false" @default.
- W4313307409 workType "article" @default.