Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313307520> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4313307520 abstract "Forecasting time-series is the most significant features of time-series analysis. For the time series that are non-stationary and non-linear, forecasting becomes more challenging. In this paper, a hybrid method of the smoothing ensemble empirical mode decomposition (SEEMD) and two machine-learning techniques, long short-term memory (LSTM) networks and convolutional neural networks (CNN), are evaluated for forecasting time series. The proposed forecasting method is called SEEMD-LSTM-CNN. First, the embedded signals in the time series are extracted using SEEMD. These signals called intrinsic mode functions (IMFs). Then, a combined method of LSTM network and CNN are used to predict the future IMFs and trend, from which the predicted time series can be constructed. In this study, three sets of synthetic datasets were used; these included data with linear and non-linear trends, as well as noise. The datasets were split for the purposes of training and testing the models: 70% of the data were used for training the model, and 30% to test the model. The high-frequency IMFs were predicted with <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$R^{2}=0.92$</tex> and a mean absolute error (MAE) of 0.043, and the low-frequency IMFs with <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$R^{2}=0.99995$</tex> and an MAE of 0.003. The proposed hybrid method produced more accurate results for the trends, with <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$R^{2}=0.overline{9}9998$</tex> and an MAE of 0.0002. In general, the proposed hybrid forecasting method was able to predict the time series with a high accuracy." @default.
- W4313307520 created "2023-01-06" @default.
- W4313307520 creator A5001969100 @default.
- W4313307520 creator A5016438755 @default.
- W4313307520 date "2022-11-16" @default.
- W4313307520 modified "2023-09-27" @default.
- W4313307520 title "Time Series Forecasting Using Smoothing Ensemble Empirical Mode Decomposition and Machine Learning Techniques" @default.
- W4313307520 cites W1828120854 @default.
- W4313307520 cites W2007221293 @default.
- W4313307520 cites W2018316544 @default.
- W4313307520 cites W2064675550 @default.
- W4313307520 cites W2122585011 @default.
- W4313307520 cites W2154326182 @default.
- W4313307520 cites W2157331557 @default.
- W4313307520 cites W2160097539 @default.
- W4313307520 cites W2913237648 @default.
- W4313307520 cites W2964006806 @default.
- W4313307520 cites W2982793269 @default.
- W4313307520 cites W3017116930 @default.
- W4313307520 cites W3066886056 @default.
- W4313307520 cites W3124354243 @default.
- W4313307520 cites W4206035758 @default.
- W4313307520 doi "https://doi.org/10.1109/iceccme55909.2022.9988336" @default.
- W4313307520 hasPublicationYear "2022" @default.
- W4313307520 type Work @default.
- W4313307520 citedByCount "0" @default.
- W4313307520 crossrefType "proceedings-article" @default.
- W4313307520 hasAuthorship W4313307520A5001969100 @default.
- W4313307520 hasAuthorship W4313307520A5016438755 @default.
- W4313307520 hasConcept C111919701 @default.
- W4313307520 hasConcept C112633086 @default.
- W4313307520 hasConcept C11413529 @default.
- W4313307520 hasConcept C115961682 @default.
- W4313307520 hasConcept C119857082 @default.
- W4313307520 hasConcept C133710760 @default.
- W4313307520 hasConcept C143724316 @default.
- W4313307520 hasConcept C151406439 @default.
- W4313307520 hasConcept C151730666 @default.
- W4313307520 hasConcept C153180895 @default.
- W4313307520 hasConcept C154945302 @default.
- W4313307520 hasConcept C25570617 @default.
- W4313307520 hasConcept C31972630 @default.
- W4313307520 hasConcept C3770464 @default.
- W4313307520 hasConcept C41008148 @default.
- W4313307520 hasConcept C48677424 @default.
- W4313307520 hasConcept C50644808 @default.
- W4313307520 hasConcept C76155785 @default.
- W4313307520 hasConcept C81363708 @default.
- W4313307520 hasConcept C86803240 @default.
- W4313307520 hasConcept C99498987 @default.
- W4313307520 hasConceptScore W4313307520C111919701 @default.
- W4313307520 hasConceptScore W4313307520C112633086 @default.
- W4313307520 hasConceptScore W4313307520C11413529 @default.
- W4313307520 hasConceptScore W4313307520C115961682 @default.
- W4313307520 hasConceptScore W4313307520C119857082 @default.
- W4313307520 hasConceptScore W4313307520C133710760 @default.
- W4313307520 hasConceptScore W4313307520C143724316 @default.
- W4313307520 hasConceptScore W4313307520C151406439 @default.
- W4313307520 hasConceptScore W4313307520C151730666 @default.
- W4313307520 hasConceptScore W4313307520C153180895 @default.
- W4313307520 hasConceptScore W4313307520C154945302 @default.
- W4313307520 hasConceptScore W4313307520C25570617 @default.
- W4313307520 hasConceptScore W4313307520C31972630 @default.
- W4313307520 hasConceptScore W4313307520C3770464 @default.
- W4313307520 hasConceptScore W4313307520C41008148 @default.
- W4313307520 hasConceptScore W4313307520C48677424 @default.
- W4313307520 hasConceptScore W4313307520C50644808 @default.
- W4313307520 hasConceptScore W4313307520C76155785 @default.
- W4313307520 hasConceptScore W4313307520C81363708 @default.
- W4313307520 hasConceptScore W4313307520C86803240 @default.
- W4313307520 hasConceptScore W4313307520C99498987 @default.
- W4313307520 hasLocation W43133075201 @default.
- W4313307520 hasOpenAccess W4313307520 @default.
- W4313307520 hasPrimaryLocation W43133075201 @default.
- W4313307520 hasRelatedWork W1480027815 @default.
- W4313307520 hasRelatedWork W2053580250 @default.
- W4313307520 hasRelatedWork W2124548931 @default.
- W4313307520 hasRelatedWork W2159994990 @default.
- W4313307520 hasRelatedWork W2373247039 @default.
- W4313307520 hasRelatedWork W3093612317 @default.
- W4313307520 hasRelatedWork W3154343960 @default.
- W4313307520 hasRelatedWork W3168343230 @default.
- W4313307520 hasRelatedWork W4287776258 @default.
- W4313307520 hasRelatedWork W4376255614 @default.
- W4313307520 isParatext "false" @default.
- W4313307520 isRetracted "false" @default.
- W4313307520 workType "article" @default.