Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313307584> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4313307584 abstract "Face biometric systems are widely deployed in a magnitude of security-related applications, including border control. However, the vulnerability of the Face Recognition Systems(FRS) to various types of attacks is well demonstrated. This work presents a novel approach for face morphing attack detection for a single image scenario by performing a multi-level fusion of deep features. The features are extracted using the pre-trained deep CNNs such as AlexNet, ResNet50. These extracted features are combined at both features and score levels to conclude if the given face image is a morph. The proposed single image Morph Attack Detection (S-MAD) approach is extensively evaluated on the face morphing dataset constructed using five different face morphing generation techniques and three different data mediums. The data mediums including digital, print-scan (re-digitised), print-scan compression (re-digitised and compressed.) Extensive experiments are carried out with intra (same datatype used for training and testing) and inter-evaluation scenarios (cross datatype used for training and testing). Further, the proposed method is compared with the State-Of-The-Art (SOTA) approaches for No reference-based/Single image Morph Attack Detection (S-MAD). The statistical analysis indicates the best performance of the proposed approach in all three different mediums." @default.
- W4313307584 created "2023-01-06" @default.
- W4313307584 creator A5024487411 @default.
- W4313307584 date "2022-11-16" @default.
- W4313307584 modified "2023-09-27" @default.
- W4313307584 title "Multilevel Fusion of Deep Features for Face Morphing Attack Detection" @default.
- W4313307584 cites W1607979445 @default.
- W4313307584 cites W1975538958 @default.
- W4313307584 cites W1976230226 @default.
- W4313307584 cites W2039051707 @default.
- W4313307584 cites W2085044339 @default.
- W4313307584 cites W2119605622 @default.
- W4313307584 cites W2124386111 @default.
- W4313307584 cites W2787608161 @default.
- W4313307584 cites W2810356827 @default.
- W4313307584 cites W2912871064 @default.
- W4313307584 cites W2964305647 @default.
- W4313307584 cites W2976439153 @default.
- W4313307584 cites W2995969064 @default.
- W4313307584 cites W3009690665 @default.
- W4313307584 cites W3012534509 @default.
- W4313307584 cites W3033348698 @default.
- W4313307584 cites W3084941652 @default.
- W4313307584 cites W3085956106 @default.
- W4313307584 cites W3101998545 @default.
- W4313307584 cites W3154227470 @default.
- W4313307584 cites W3154569431 @default.
- W4313307584 cites W3174032609 @default.
- W4313307584 cites W3186423747 @default.
- W4313307584 doi "https://doi.org/10.1109/iceccme55909.2022.9987842" @default.
- W4313307584 hasPublicationYear "2022" @default.
- W4313307584 type Work @default.
- W4313307584 citedByCount "0" @default.
- W4313307584 crossrefType "proceedings-article" @default.
- W4313307584 hasAuthorship W4313307584A5024487411 @default.
- W4313307584 hasConcept C108583219 @default.
- W4313307584 hasConcept C115961682 @default.
- W4313307584 hasConcept C144024400 @default.
- W4313307584 hasConcept C153180895 @default.
- W4313307584 hasConcept C154945302 @default.
- W4313307584 hasConcept C184297639 @default.
- W4313307584 hasConcept C2779304628 @default.
- W4313307584 hasConcept C31510193 @default.
- W4313307584 hasConcept C31972630 @default.
- W4313307584 hasConcept C36289849 @default.
- W4313307584 hasConcept C41008148 @default.
- W4313307584 hasConcept C4641261 @default.
- W4313307584 hasConcept C50637493 @default.
- W4313307584 hasConcept C52622490 @default.
- W4313307584 hasConceptScore W4313307584C108583219 @default.
- W4313307584 hasConceptScore W4313307584C115961682 @default.
- W4313307584 hasConceptScore W4313307584C144024400 @default.
- W4313307584 hasConceptScore W4313307584C153180895 @default.
- W4313307584 hasConceptScore W4313307584C154945302 @default.
- W4313307584 hasConceptScore W4313307584C184297639 @default.
- W4313307584 hasConceptScore W4313307584C2779304628 @default.
- W4313307584 hasConceptScore W4313307584C31510193 @default.
- W4313307584 hasConceptScore W4313307584C31972630 @default.
- W4313307584 hasConceptScore W4313307584C36289849 @default.
- W4313307584 hasConceptScore W4313307584C41008148 @default.
- W4313307584 hasConceptScore W4313307584C4641261 @default.
- W4313307584 hasConceptScore W4313307584C50637493 @default.
- W4313307584 hasConceptScore W4313307584C52622490 @default.
- W4313307584 hasLocation W43133075841 @default.
- W4313307584 hasOpenAccess W4313307584 @default.
- W4313307584 hasPrimaryLocation W43133075841 @default.
- W4313307584 hasRelatedWork W1548715306 @default.
- W4313307584 hasRelatedWork W2003685048 @default.
- W4313307584 hasRelatedWork W2017517155 @default.
- W4313307584 hasRelatedWork W2031420897 @default.
- W4313307584 hasRelatedWork W2147083459 @default.
- W4313307584 hasRelatedWork W2372194912 @default.
- W4313307584 hasRelatedWork W2532573070 @default.
- W4313307584 hasRelatedWork W2607108626 @default.
- W4313307584 hasRelatedWork W2733060750 @default.
- W4313307584 hasRelatedWork W4312603404 @default.
- W4313307584 isParatext "false" @default.
- W4313307584 isRetracted "false" @default.
- W4313307584 workType "article" @default.