Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313307729> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4313307729 abstract "In this paper, we propose a novel method for high-growth firm prediction by minimizing a cost function using a Genetic Algorithm (GA). To achieve it, the GA is used to search to find a set of important variables which provide the best fit for machine learning models so that accurate predictions can be made for high-growth firm prediction. The GA is employed to optimize the mean square error (MSE) between the accurate results and the predicted results of the machine learning methods by evolving the initially generated binary solutions through iterations. The proposed method obtains the best fitting set of variables for the machine learning methods for high-growth firm prediction. Four different machine learning methods which are Support Vector Machines (SVM), Logistic Regression, Random Forest (RF) and K-Nearest Neighbor (K-NN) have been employed with the GA and experimental results show that using RF with the GA achieves the best accuracy results with 94.93%." @default.
- W4313307729 created "2023-01-06" @default.
- W4313307729 creator A5024755690 @default.
- W4313307729 creator A5030659142 @default.
- W4313307729 creator A5044120766 @default.
- W4313307729 creator A5048554128 @default.
- W4313307729 creator A5050463261 @default.
- W4313307729 date "2022-11-16" @default.
- W4313307729 modified "2023-09-27" @default.
- W4313307729 title "Genetic Algorithm-based Variable Selection Approach for High-Growth Firm Prediction" @default.
- W4313307729 cites W1501606001 @default.
- W4313307729 cites W1571420718 @default.
- W4313307729 cites W2024502389 @default.
- W4313307729 cites W2028006312 @default.
- W4313307729 cites W2096375611 @default.
- W4313307729 cites W2122825543 @default.
- W4313307729 cites W2125736403 @default.
- W4313307729 cites W2134920874 @default.
- W4313307729 cites W2513955866 @default.
- W4313307729 cites W2537809908 @default.
- W4313307729 cites W2744836900 @default.
- W4313307729 cites W2773560310 @default.
- W4313307729 cites W2952783399 @default.
- W4313307729 cites W3002469388 @default.
- W4313307729 cites W4220697994 @default.
- W4313307729 doi "https://doi.org/10.1109/iceccme55909.2022.9988729" @default.
- W4313307729 hasPublicationYear "2022" @default.
- W4313307729 type Work @default.
- W4313307729 citedByCount "0" @default.
- W4313307729 crossrefType "proceedings-article" @default.
- W4313307729 hasAuthorship W4313307729A5024755690 @default.
- W4313307729 hasAuthorship W4313307729A5030659142 @default.
- W4313307729 hasAuthorship W4313307729A5044120766 @default.
- W4313307729 hasAuthorship W4313307729A5048554128 @default.
- W4313307729 hasAuthorship W4313307729A5050463261 @default.
- W4313307729 hasConcept C105795698 @default.
- W4313307729 hasConcept C11413529 @default.
- W4313307729 hasConcept C119857082 @default.
- W4313307729 hasConcept C12267149 @default.
- W4313307729 hasConcept C134306372 @default.
- W4313307729 hasConcept C139945424 @default.
- W4313307729 hasConcept C148483581 @default.
- W4313307729 hasConcept C151956035 @default.
- W4313307729 hasConcept C154945302 @default.
- W4313307729 hasConcept C169258074 @default.
- W4313307729 hasConcept C177264268 @default.
- W4313307729 hasConcept C182365436 @default.
- W4313307729 hasConcept C199360897 @default.
- W4313307729 hasConcept C33923547 @default.
- W4313307729 hasConcept C41008148 @default.
- W4313307729 hasConcept C48372109 @default.
- W4313307729 hasConcept C81917197 @default.
- W4313307729 hasConcept C8880873 @default.
- W4313307729 hasConcept C94375191 @default.
- W4313307729 hasConceptScore W4313307729C105795698 @default.
- W4313307729 hasConceptScore W4313307729C11413529 @default.
- W4313307729 hasConceptScore W4313307729C119857082 @default.
- W4313307729 hasConceptScore W4313307729C12267149 @default.
- W4313307729 hasConceptScore W4313307729C134306372 @default.
- W4313307729 hasConceptScore W4313307729C139945424 @default.
- W4313307729 hasConceptScore W4313307729C148483581 @default.
- W4313307729 hasConceptScore W4313307729C151956035 @default.
- W4313307729 hasConceptScore W4313307729C154945302 @default.
- W4313307729 hasConceptScore W4313307729C169258074 @default.
- W4313307729 hasConceptScore W4313307729C177264268 @default.
- W4313307729 hasConceptScore W4313307729C182365436 @default.
- W4313307729 hasConceptScore W4313307729C199360897 @default.
- W4313307729 hasConceptScore W4313307729C33923547 @default.
- W4313307729 hasConceptScore W4313307729C41008148 @default.
- W4313307729 hasConceptScore W4313307729C48372109 @default.
- W4313307729 hasConceptScore W4313307729C81917197 @default.
- W4313307729 hasConceptScore W4313307729C8880873 @default.
- W4313307729 hasConceptScore W4313307729C94375191 @default.
- W4313307729 hasLocation W43133077291 @default.
- W4313307729 hasOpenAccess W4313307729 @default.
- W4313307729 hasPrimaryLocation W43133077291 @default.
- W4313307729 hasRelatedWork W2985924212 @default.
- W4313307729 hasRelatedWork W3034132578 @default.
- W4313307729 hasRelatedWork W3165907317 @default.
- W4313307729 hasRelatedWork W3210877509 @default.
- W4313307729 hasRelatedWork W4213444042 @default.
- W4313307729 hasRelatedWork W4225360065 @default.
- W4313307729 hasRelatedWork W4285237370 @default.
- W4313307729 hasRelatedWork W4321636153 @default.
- W4313307729 hasRelatedWork W4327511089 @default.
- W4313307729 hasRelatedWork W4377964522 @default.
- W4313307729 isParatext "false" @default.
- W4313307729 isRetracted "false" @default.
- W4313307729 workType "article" @default.