Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313308422> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4313308422 abstract "Figuring out the right airfoil is a crucial step in the preliminary stage of any aerial vehicle design, as its shape directly affects the overall aerodynamic characteristics of the aircraft or rotorcraft. Besides being a measure of performance, the aerodynamic coefficients are used to design additional subsystems such as a flight control system, or predict complex dynamic phenomena such as aeroelastic instability. The coefficients in question can either be obtained experimentally through wind tunnel testing or, depending upon the accuracy requirements, by numerically simulating the underlying fundamental equations of fluid dynamics. In this paper, the feasibility of applying Artificial Neural Networks (ANNs) to estimate the aerodynamic coefficients of differing airfoil geometries at varying Angle of Attack, Mach and Reynolds number is investigated. The ANNs are computational entities that have the ability to learn highly nonlinear spatial and temporal patterns. Therefore, they are increasingly being used to approximate complex real-world phenomenon. However, despite their significant breakthrough in the past few years, ANNs' spreading in the field of Computational Fluid Dynamics (CFD) is fairly recent, and many applications within this field remain unexplored. This study thus compares different network architectures and training datasets in an attempt to gain insight as to how the network perceives the given airfoil geometries, while producing an acceptable neuronal model for faster and easier prediction of lift, drag and moment coefficients in steady state, incompressible flow regimes. This data-driven method produces sufficiently accurate results, with the added benefit of saving high computational and experimental costs." @default.
- W4313308422 created "2023-01-06" @default.
- W4313308422 creator A5033524825 @default.
- W4313308422 creator A5042128114 @default.
- W4313308422 creator A5056448752 @default.
- W4313308422 creator A5067670826 @default.
- W4313308422 date "2021-09-24" @default.
- W4313308422 modified "2023-09-23" @default.
- W4313308422 title "Airfoil's Aerodynamic Coefficients Prediction using Artificial Neural Network" @default.
- W4313308422 doi "https://doi.org/10.48550/arxiv.2109.12149" @default.
- W4313308422 hasPublicationYear "2021" @default.
- W4313308422 type Work @default.
- W4313308422 citedByCount "0" @default.
- W4313308422 crossrefType "posted-content" @default.
- W4313308422 hasAuthorship W4313308422A5033524825 @default.
- W4313308422 hasAuthorship W4313308422A5042128114 @default.
- W4313308422 hasAuthorship W4313308422A5056448752 @default.
- W4313308422 hasAuthorship W4313308422A5067670826 @default.
- W4313308422 hasBestOaLocation W43133084221 @default.
- W4313308422 hasConcept C100086909 @default.
- W4313308422 hasConcept C112124176 @default.
- W4313308422 hasConcept C117185709 @default.
- W4313308422 hasConcept C119857082 @default.
- W4313308422 hasConcept C121332964 @default.
- W4313308422 hasConcept C127413603 @default.
- W4313308422 hasConcept C132557482 @default.
- W4313308422 hasConcept C13393347 @default.
- W4313308422 hasConcept C139002025 @default.
- W4313308422 hasConcept C146978453 @default.
- W4313308422 hasConcept C154945302 @default.
- W4313308422 hasConcept C158622935 @default.
- W4313308422 hasConcept C1633027 @default.
- W4313308422 hasConcept C165231844 @default.
- W4313308422 hasConcept C182748727 @default.
- W4313308422 hasConcept C196558001 @default.
- W4313308422 hasConcept C2775924081 @default.
- W4313308422 hasConcept C41008148 @default.
- W4313308422 hasConcept C47446073 @default.
- W4313308422 hasConcept C50644808 @default.
- W4313308422 hasConcept C527307 @default.
- W4313308422 hasConcept C57879066 @default.
- W4313308422 hasConcept C62520636 @default.
- W4313308422 hasConceptScore W4313308422C100086909 @default.
- W4313308422 hasConceptScore W4313308422C112124176 @default.
- W4313308422 hasConceptScore W4313308422C117185709 @default.
- W4313308422 hasConceptScore W4313308422C119857082 @default.
- W4313308422 hasConceptScore W4313308422C121332964 @default.
- W4313308422 hasConceptScore W4313308422C127413603 @default.
- W4313308422 hasConceptScore W4313308422C132557482 @default.
- W4313308422 hasConceptScore W4313308422C13393347 @default.
- W4313308422 hasConceptScore W4313308422C139002025 @default.
- W4313308422 hasConceptScore W4313308422C146978453 @default.
- W4313308422 hasConceptScore W4313308422C154945302 @default.
- W4313308422 hasConceptScore W4313308422C158622935 @default.
- W4313308422 hasConceptScore W4313308422C1633027 @default.
- W4313308422 hasConceptScore W4313308422C165231844 @default.
- W4313308422 hasConceptScore W4313308422C182748727 @default.
- W4313308422 hasConceptScore W4313308422C196558001 @default.
- W4313308422 hasConceptScore W4313308422C2775924081 @default.
- W4313308422 hasConceptScore W4313308422C41008148 @default.
- W4313308422 hasConceptScore W4313308422C47446073 @default.
- W4313308422 hasConceptScore W4313308422C50644808 @default.
- W4313308422 hasConceptScore W4313308422C527307 @default.
- W4313308422 hasConceptScore W4313308422C57879066 @default.
- W4313308422 hasConceptScore W4313308422C62520636 @default.
- W4313308422 hasLocation W43133084221 @default.
- W4313308422 hasOpenAccess W4313308422 @default.
- W4313308422 hasPrimaryLocation W43133084221 @default.
- W4313308422 hasRelatedWork W1972200792 @default.
- W4313308422 hasRelatedWork W2009798193 @default.
- W4313308422 hasRelatedWork W2038495920 @default.
- W4313308422 hasRelatedWork W2186002321 @default.
- W4313308422 hasRelatedWork W2314544637 @default.
- W4313308422 hasRelatedWork W2353036749 @default.
- W4313308422 hasRelatedWork W2985830524 @default.
- W4313308422 hasRelatedWork W3174260266 @default.
- W4313308422 hasRelatedWork W56783536 @default.
- W4313308422 hasRelatedWork W839540091 @default.
- W4313308422 isParatext "false" @default.
- W4313308422 isRetracted "false" @default.
- W4313308422 workType "article" @default.