Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313308879> ?p ?o ?g. }
- W4313308879 endingPage "e37207" @default.
- W4313308879 startingPage "e37207" @default.
- W4313308879 abstract "Medication-assisted treatment (MAT) is an effective method for treating opioid use disorder (OUD), which combines behavioral therapies with one of three Food and Drug Administration-approved medications: methadone, buprenorphine, and naloxone. While MAT has been shown to be effective initially, there is a need for more information from the patient perspective about the satisfaction with medications. Existing research focuses on patient satisfaction with the entirety of the treatment, making it difficult to determine the unique role of medication and overlooking the views of those who may lack access to treatment due to being uninsured or concerns over stigma. Studies focusing on patients' perspectives are also limited by the lack of scales that can efficiently collect self-reports across domains of concerns.A broad survey of patients' viewpoints can be obtained through social media and drug review forums, which are then assessed using automated methods to discover factors associated with medication satisfaction. Because the text is unstructured, it may contain a mix of formal and informal language. The primary aim of this study was to use natural language processing methods on text posted on health-related social media to detect patients' satisfaction with two well-studied OUD medications: methadone and buprenorphine/naloxone.We collected 4353 patient reviews of methadone and buprenorphine/naloxone from 2008 to 2021 posted on WebMD and Drugs.com. To build our predictive models for detecting patient satisfaction, we first employed different analyses to build four input feature sets using the vectorized text, topic models, duration of treatment, and biomedical concepts by applying MetaMap. We then developed six prediction models: logistic regression, Elastic Net, least absolute shrinkage and selection operator, random forest classifier, Ridge classifier, and extreme gradient boosting to predict patients' satisfaction. Lastly, we compared the prediction models' performance over different feature sets.Topics discovered included oral sensation, side effects, insurance, and doctor visits. Biomedical concepts included symptoms, drugs, and illnesses. The F-score of the predictive models across all methods ranged from 89.9% to 90.8%. The Ridge classifier model, a regression-based method, outperformed the other models.Assessment of patients' satisfaction with opioid dependency treatment medication can be predicted using automated text analysis. Adding biomedical concepts such as symptoms, drug name, and illness, along with the duration of treatment and topic models, had the most benefits for improving the prediction performance of the Elastic Net model compared to other models. Some of the factors associated with patient satisfaction overlap with domains covered in medication satisfaction scales (eg, side effects) and qualitative patient reports (eg, doctors' visits), while others (insurance) are overlooked, thereby underscoring the value added from processing text on online health forums to better understand patient adherence." @default.
- W4313308879 created "2023-01-06" @default.
- W4313308879 creator A5010869663 @default.
- W4313308879 creator A5030336086 @default.
- W4313308879 creator A5044712586 @default.
- W4313308879 creator A5074942621 @default.
- W4313308879 creator A5089827744 @default.
- W4313308879 date "2023-01-23" @default.
- W4313308879 modified "2023-09-26" @default.
- W4313308879 title "Predicting Patient Satisfaction With Medications for Treating Opioid Use Disorder: Case Study Applying Natural Language Processing to Reviews of Methadone and Buprenorphine/Naloxone on Health-Related Social Media" @default.
- W4313308879 cites W1606572296 @default.
- W4313308879 cites W1977098485 @default.
- W4313308879 cites W1978191687 @default.
- W4313308879 cites W1979655048 @default.
- W4313308879 cites W1997980357 @default.
- W4313308879 cites W2000515020 @default.
- W4313308879 cites W2013669727 @default.
- W4313308879 cites W2022020282 @default.
- W4313308879 cites W2058779973 @default.
- W4313308879 cites W2079622133 @default.
- W4313308879 cites W2086841032 @default.
- W4313308879 cites W2098185806 @default.
- W4313308879 cites W2106212012 @default.
- W4313308879 cites W2119421920 @default.
- W4313308879 cites W2122402213 @default.
- W4313308879 cites W2131335112 @default.
- W4313308879 cites W2137423237 @default.
- W4313308879 cites W2139865360 @default.
- W4313308879 cites W2198222678 @default.
- W4313308879 cites W2520326549 @default.
- W4313308879 cites W2593411235 @default.
- W4313308879 cites W2599590541 @default.
- W4313308879 cites W2605217828 @default.
- W4313308879 cites W2740216362 @default.
- W4313308879 cites W2749701213 @default.
- W4313308879 cites W2779080910 @default.
- W4313308879 cites W2784537350 @default.
- W4313308879 cites W2796839688 @default.
- W4313308879 cites W2800645028 @default.
- W4313308879 cites W2919256513 @default.
- W4313308879 cites W2924338030 @default.
- W4313308879 cites W2936817678 @default.
- W4313308879 cites W2944736729 @default.
- W4313308879 cites W2950410030 @default.
- W4313308879 cites W2964762887 @default.
- W4313308879 cites W2980213974 @default.
- W4313308879 cites W2982621473 @default.
- W4313308879 cites W3001781052 @default.
- W4313308879 cites W3008631807 @default.
- W4313308879 cites W3088021670 @default.
- W4313308879 cites W3110065222 @default.
- W4313308879 cites W3159785024 @default.
- W4313308879 cites W3180721686 @default.
- W4313308879 cites W3198649872 @default.
- W4313308879 cites W4210615896 @default.
- W4313308879 cites W4211235060 @default.
- W4313308879 cites W4237791300 @default.
- W4313308879 cites W4240955631 @default.
- W4313308879 cites W571200655 @default.
- W4313308879 doi "https://doi.org/10.2196/37207" @default.
- W4313308879 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37113381" @default.
- W4313308879 hasPublicationYear "2023" @default.
- W4313308879 type Work @default.
- W4313308879 citedByCount "0" @default.
- W4313308879 crossrefType "journal-article" @default.
- W4313308879 hasAuthorship W4313308879A5010869663 @default.
- W4313308879 hasAuthorship W4313308879A5030336086 @default.
- W4313308879 hasAuthorship W4313308879A5044712586 @default.
- W4313308879 hasAuthorship W4313308879A5074942621 @default.
- W4313308879 hasAuthorship W4313308879A5089827744 @default.
- W4313308879 hasBestOaLocation W43133088791 @default.
- W4313308879 hasConcept C118552586 @default.
- W4313308879 hasConcept C126322002 @default.
- W4313308879 hasConcept C15744967 @default.
- W4313308879 hasConcept C159110408 @default.
- W4313308879 hasConcept C170493617 @default.
- W4313308879 hasConcept C2775944032 @default.
- W4313308879 hasConcept C2778750930 @default.
- W4313308879 hasConcept C2778767360 @default.
- W4313308879 hasConcept C2778949969 @default.
- W4313308879 hasConcept C2779418921 @default.
- W4313308879 hasConcept C2781063702 @default.
- W4313308879 hasConcept C71924100 @default.
- W4313308879 hasConceptScore W4313308879C118552586 @default.
- W4313308879 hasConceptScore W4313308879C126322002 @default.
- W4313308879 hasConceptScore W4313308879C15744967 @default.
- W4313308879 hasConceptScore W4313308879C159110408 @default.
- W4313308879 hasConceptScore W4313308879C170493617 @default.
- W4313308879 hasConceptScore W4313308879C2775944032 @default.
- W4313308879 hasConceptScore W4313308879C2778750930 @default.
- W4313308879 hasConceptScore W4313308879C2778767360 @default.
- W4313308879 hasConceptScore W4313308879C2778949969 @default.
- W4313308879 hasConceptScore W4313308879C2779418921 @default.
- W4313308879 hasConceptScore W4313308879C2781063702 @default.
- W4313308879 hasConceptScore W4313308879C71924100 @default.
- W4313308879 hasLocation W43133088791 @default.
- W4313308879 hasLocation W43133088792 @default.
- W4313308879 hasLocation W43133088793 @default.