Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313309533> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4313309533 endingPage "120" @default.
- W4313309533 startingPage "107" @default.
- W4313309533 abstract "The asymptotic perturbation (AP) method can be used to build approximate solutions to many nonlinear physics problems. This chapter performs an analytical investigation of the Zakharov–Kuznetsov equation, a remarkable equation for plasma physics, and shows the existence of approximate interacting localized solutions. Using the AP method, based on Fourier expansion and spatiotemporal rescaling, it is found that the amplitude slow modulation of Fourier modes is described by a C-integrable system of nonlinear evolution equations. The chapter derives a model system of equations for slow modulation of Fourier mode amplitudes and shows that it is C-integrable. It then demonstrates the existence of dromions, which preserve their shape during collisions, the only change being a phase shift. The chapter also focuses on other coherent solutions such as, line solitons, dromions, multilump solutions, ring solitons, instanton solutions, and breathers." @default.
- W4313309533 created "2023-01-06" @default.
- W4313309533 date "2022-12-30" @default.
- W4313309533 modified "2023-09-27" @default.
- W4313309533 title "The Asymptotic Perturbation Method for Physics Problems" @default.
- W4313309533 doi "https://doi.org/10.1002/9783527841745.ch7" @default.
- W4313309533 hasPublicationYear "2022" @default.
- W4313309533 type Work @default.
- W4313309533 citedByCount "0" @default.
- W4313309533 crossrefType "other" @default.
- W4313309533 hasConcept C102519508 @default.
- W4313309533 hasConcept C121332964 @default.
- W4313309533 hasConcept C125198404 @default.
- W4313309533 hasConcept C134306372 @default.
- W4313309533 hasConcept C158622935 @default.
- W4313309533 hasConcept C174256460 @default.
- W4313309533 hasConcept C177918212 @default.
- W4313309533 hasConcept C180205008 @default.
- W4313309533 hasConcept C200741047 @default.
- W4313309533 hasConcept C203024314 @default.
- W4313309533 hasConcept C207864730 @default.
- W4313309533 hasConcept C33923547 @default.
- W4313309533 hasConcept C37914503 @default.
- W4313309533 hasConcept C62520636 @default.
- W4313309533 hasConcept C74455749 @default.
- W4313309533 hasConceptScore W4313309533C102519508 @default.
- W4313309533 hasConceptScore W4313309533C121332964 @default.
- W4313309533 hasConceptScore W4313309533C125198404 @default.
- W4313309533 hasConceptScore W4313309533C134306372 @default.
- W4313309533 hasConceptScore W4313309533C158622935 @default.
- W4313309533 hasConceptScore W4313309533C174256460 @default.
- W4313309533 hasConceptScore W4313309533C177918212 @default.
- W4313309533 hasConceptScore W4313309533C180205008 @default.
- W4313309533 hasConceptScore W4313309533C200741047 @default.
- W4313309533 hasConceptScore W4313309533C203024314 @default.
- W4313309533 hasConceptScore W4313309533C207864730 @default.
- W4313309533 hasConceptScore W4313309533C33923547 @default.
- W4313309533 hasConceptScore W4313309533C37914503 @default.
- W4313309533 hasConceptScore W4313309533C62520636 @default.
- W4313309533 hasConceptScore W4313309533C74455749 @default.
- W4313309533 hasLocation W43133095331 @default.
- W4313309533 hasOpenAccess W4313309533 @default.
- W4313309533 hasPrimaryLocation W43133095331 @default.
- W4313309533 hasRelatedWork W1968832037 @default.
- W4313309533 hasRelatedWork W1988676863 @default.
- W4313309533 hasRelatedWork W1993387726 @default.
- W4313309533 hasRelatedWork W1996948902 @default.
- W4313309533 hasRelatedWork W1997932118 @default.
- W4313309533 hasRelatedWork W2001834359 @default.
- W4313309533 hasRelatedWork W2024998910 @default.
- W4313309533 hasRelatedWork W2066908446 @default.
- W4313309533 hasRelatedWork W2535838832 @default.
- W4313309533 hasRelatedWork W2886018538 @default.
- W4313309533 isParatext "false" @default.
- W4313309533 isRetracted "false" @default.
- W4313309533 workType "other" @default.