Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313311943> ?p ?o ?g. }
- W4313311943 endingPage "2416" @default.
- W4313311943 startingPage "2402" @default.
- W4313311943 abstract "Various dosimeters have been proposed for skin dosimetry in electron radiotherapy. However, one main drawback of these skin dosimeters is their lack of flexibility, which could make accurate dose measurements challenging due to air gaps between a curved patient surface and dosimeter. Therefore, the purpose of this study is to suggest a novel flexible skin dosimeter based on a thin-film copper indium gallium selenide (CIGS) solar cell, and to evaluate its dosimetric characteristics.The CIGS solar cell dosimeter consisted of (a) a customized thin-film CIGS solar cell and (b) a data acquisition (DAQ) system. The CIGS solar cell with a thickness of 0.33 mm was customized to a size of 10 × 10 mm2 . This customized solar cell plays a role in converting therapeutic electron radiation into electrical signals. The DAQ system was composed of a voltage amplifier with a gain of 1000, a voltage input module, a DAQ chassis, and an in-house software. This system converted the electrical analog signals (from solar cell) to digital signals with a sampling rate of ≤50 kHz and then quantified/visualized the digital signals in real time. We quantified the linearity/ sampling rate effect/dose rate dependence/energy dependence/field size output factor/reproducibility/curvature/bending recoverability/angular dependence of the CIGS solar cell dosimeter in therapeutic electron beams. To evaluate clinical feasibility, we measured the skin point doses by attaching the CIGS solar cell to an anthropomorphic phantom surface (for forehead, mouth, and thorax). The CIGS-measured doses were compared with calculated doses (by treatment planning system) and measured doses (by optically stimulated luminescent dosimeter).The normalized signals of the solar cell dosimeter increased linearly as the delivered dose increased. The gradient of the linearly fitted line was 1.00 with an R-square of 0.9999. The sampling rates (2, 10, and 50 kHz) of the solar cell dosimeter showed good performance even at low doses (<50 cGy). The solar cell dosimeter exhibited dose rate independence within 1% and energy independence within 3% error margins. The signals of the solar cell dosimeter were similar (<1%) when penetrating the same side of the CIGS cell regardless of the rotation angle of the solar cell. The field size output factor measured by the solar cell dosimeter was comparable to that measured by the ion chamber. The solar cell signals were similar between the baseline (week 1) and the last time point (week 4). Our detector showed curvature independence within 1.8% (curvatures of <0.10 mm- ) and bending recovery (curvature of 0.10 mm-1 ). The differences between measured doses (CIGS solar cell dosimeter vs. optically stimulated luminescent dosimeter) were 7.1%, 9.6%, and 1.0% for forehead, mouth, and thorax, respectively.We present the construction of a flexible skin dosimeter based on a CIGS solar cell. Our findings demonstrate that the CIGS solar cell has a potential to be a novel flexible skin dosimeter for electron radiotherapy. Moreover, this dosimeter is manufactured with low cost and can be easily customized to various size/shape, which represents advantages over other dosimeters." @default.
- W4313311943 created "2023-01-06" @default.
- W4313311943 creator A5019690745 @default.
- W4313311943 creator A5020398532 @default.
- W4313311943 creator A5028389305 @default.
- W4313311943 creator A5032890132 @default.
- W4313311943 creator A5045637675 @default.
- W4313311943 creator A5059352711 @default.
- W4313311943 creator A5063070698 @default.
- W4313311943 creator A5066443267 @default.
- W4313311943 creator A5084473082 @default.
- W4313311943 date "2023-01-16" @default.
- W4313311943 modified "2023-10-01" @default.
- W4313311943 title "Flexible real‐time skin dosimeter based on a thin‐film copper indium gallium selenide solar cell for electron radiation therapy" @default.
- W4313311943 cites W1494130338 @default.
- W4313311943 cites W1603927759 @default.
- W4313311943 cites W1966931956 @default.
- W4313311943 cites W1978217978 @default.
- W4313311943 cites W1979767755 @default.
- W4313311943 cites W1986038506 @default.
- W4313311943 cites W1987915211 @default.
- W4313311943 cites W1990443438 @default.
- W4313311943 cites W1992408402 @default.
- W4313311943 cites W2000558433 @default.
- W4313311943 cites W2001150864 @default.
- W4313311943 cites W2003241583 @default.
- W4313311943 cites W2007823814 @default.
- W4313311943 cites W2009510860 @default.
- W4313311943 cites W2012133315 @default.
- W4313311943 cites W2013721400 @default.
- W4313311943 cites W2016236733 @default.
- W4313311943 cites W2022055777 @default.
- W4313311943 cites W2023379797 @default.
- W4313311943 cites W2029502282 @default.
- W4313311943 cites W2045499192 @default.
- W4313311943 cites W2047015862 @default.
- W4313311943 cites W2059108666 @default.
- W4313311943 cites W2061654154 @default.
- W4313311943 cites W2075516916 @default.
- W4313311943 cites W2085325460 @default.
- W4313311943 cites W2086675929 @default.
- W4313311943 cites W2095572811 @default.
- W4313311943 cites W2096588717 @default.
- W4313311943 cites W2111797364 @default.
- W4313311943 cites W2123006165 @default.
- W4313311943 cites W2138203229 @default.
- W4313311943 cites W2165767756 @default.
- W4313311943 cites W2169083556 @default.
- W4313311943 cites W2170829030 @default.
- W4313311943 cites W2312889257 @default.
- W4313311943 cites W2321153059 @default.
- W4313311943 cites W2412303241 @default.
- W4313311943 cites W2582544083 @default.
- W4313311943 cites W2586039104 @default.
- W4313311943 cites W2590468337 @default.
- W4313311943 cites W2616818687 @default.
- W4313311943 cites W2789736287 @default.
- W4313311943 cites W2794009067 @default.
- W4313311943 cites W2888254710 @default.
- W4313311943 cites W2946167500 @default.
- W4313311943 cites W2966216006 @default.
- W4313311943 cites W3014569492 @default.
- W4313311943 cites W3118380877 @default.
- W4313311943 cites W3160171217 @default.
- W4313311943 cites W4223417707 @default.
- W4313311943 cites W67989200 @default.
- W4313311943 doi "https://doi.org/10.1002/mp.16191" @default.
- W4313311943 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36583513" @default.
- W4313311943 hasPublicationYear "2023" @default.
- W4313311943 type Work @default.
- W4313311943 citedByCount "0" @default.
- W4313311943 crossrefType "journal-article" @default.
- W4313311943 hasAuthorship W4313311943A5019690745 @default.
- W4313311943 hasAuthorship W4313311943A5020398532 @default.
- W4313311943 hasAuthorship W4313311943A5028389305 @default.
- W4313311943 hasAuthorship W4313311943A5032890132 @default.
- W4313311943 hasAuthorship W4313311943A5045637675 @default.
- W4313311943 hasAuthorship W4313311943A5059352711 @default.
- W4313311943 hasAuthorship W4313311943A5063070698 @default.
- W4313311943 hasAuthorship W4313311943A5066443267 @default.
- W4313311943 hasAuthorship W4313311943A5084473082 @default.
- W4313311943 hasConcept C105636585 @default.
- W4313311943 hasConcept C120665830 @default.
- W4313311943 hasConcept C121332964 @default.
- W4313311943 hasConcept C191716631 @default.
- W4313311943 hasConcept C192562407 @default.
- W4313311943 hasConcept C2780824857 @default.
- W4313311943 hasConcept C2989005 @default.
- W4313311943 hasConcept C49040817 @default.
- W4313311943 hasConcept C71924100 @default.
- W4313311943 hasConcept C75088862 @default.
- W4313311943 hasConceptScore W4313311943C105636585 @default.
- W4313311943 hasConceptScore W4313311943C120665830 @default.
- W4313311943 hasConceptScore W4313311943C121332964 @default.
- W4313311943 hasConceptScore W4313311943C191716631 @default.
- W4313311943 hasConceptScore W4313311943C192562407 @default.
- W4313311943 hasConceptScore W4313311943C2780824857 @default.
- W4313311943 hasConceptScore W4313311943C2989005 @default.