Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313313277> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4313313277 endingPage "762" @default.
- W4313313277 startingPage "752" @default.
- W4313313277 abstract "Federated machine learning is a decentralized/ distributive method to train machine learning models by keeping the datasets of the collaborators private and safe at their respective sites. The collaborators send their model updates to a central aggregator which merges the local models into a global model and then sends the model updates to all the contributing parties. Thus, only model updates are sent ex-situ while the data remains in-situ. This method of working assumes the aggregator to be safe from malicious gradient tampering, poisoning attacks, and the introduction of backdoors, which is not always the case. So, in this work, a Blockchain-based federated learning method is proposed for the secure aggregation of private data. In the proposed blockchain-based model, aggregation is carried out as the clients submit their respective local updates, resulting in accuracy comparable to the traditional centralized models. Moreover, for large datasets, the model provides lower latency, and thus, it can be a good solution for real-time and near-real-time applications." @default.
- W4313313277 created "2023-01-06" @default.
- W4313313277 creator A5008779469 @default.
- W4313313277 creator A5049006021 @default.
- W4313313277 creator A5074510103 @default.
- W4313313277 date "2022-01-01" @default.
- W4313313277 modified "2023-09-30" @default.
- W4313313277 title "Blockchain Base Community Cluster-Federated Learning for Secure Aggregation of Healthcare Data" @default.
- W4313313277 cites W2018772771 @default.
- W4313313277 cites W2027106132 @default.
- W4313313277 cites W2040088268 @default.
- W4313313277 cites W2041858284 @default.
- W4313313277 cites W2070608670 @default.
- W4313313277 cites W2072324809 @default.
- W4313313277 cites W2079673926 @default.
- W4313313277 cites W2114579022 @default.
- W4313313277 cites W2149140091 @default.
- W4313313277 cites W2151576062 @default.
- W4313313277 cites W2152575748 @default.
- W4313313277 cites W2153658404 @default.
- W4313313277 cites W2257979135 @default.
- W4313313277 cites W2526085503 @default.
- W4313313277 cites W2561457073 @default.
- W4313313277 cites W2610332124 @default.
- W4313313277 cites W2627056018 @default.
- W4313313277 cites W2893405045 @default.
- W4313313277 cites W3120167461 @default.
- W4313313277 cites W3170186883 @default.
- W4313313277 cites W2090541620 @default.
- W4313313277 doi "https://doi.org/10.1016/j.procs.2022.12.077" @default.
- W4313313277 hasPublicationYear "2022" @default.
- W4313313277 type Work @default.
- W4313313277 citedByCount "0" @default.
- W4313313277 crossrefType "journal-article" @default.
- W4313313277 hasAuthorship W4313313277A5008779469 @default.
- W4313313277 hasAuthorship W4313313277A5049006021 @default.
- W4313313277 hasAuthorship W4313313277A5074510103 @default.
- W4313313277 hasBestOaLocation W43133132771 @default.
- W4313313277 hasConcept C120314980 @default.
- W4313313277 hasConcept C124101348 @default.
- W4313313277 hasConcept C136764020 @default.
- W4313313277 hasConcept C180505990 @default.
- W4313313277 hasConcept C2779687700 @default.
- W4313313277 hasConcept C2992525071 @default.
- W4313313277 hasConcept C31258907 @default.
- W4313313277 hasConcept C38652104 @default.
- W4313313277 hasConcept C41008148 @default.
- W4313313277 hasConcept C68649174 @default.
- W4313313277 hasConceptScore W4313313277C120314980 @default.
- W4313313277 hasConceptScore W4313313277C124101348 @default.
- W4313313277 hasConceptScore W4313313277C136764020 @default.
- W4313313277 hasConceptScore W4313313277C180505990 @default.
- W4313313277 hasConceptScore W4313313277C2779687700 @default.
- W4313313277 hasConceptScore W4313313277C2992525071 @default.
- W4313313277 hasConceptScore W4313313277C31258907 @default.
- W4313313277 hasConceptScore W4313313277C38652104 @default.
- W4313313277 hasConceptScore W4313313277C41008148 @default.
- W4313313277 hasConceptScore W4313313277C68649174 @default.
- W4313313277 hasLocation W43133132771 @default.
- W4313313277 hasOpenAccess W4313313277 @default.
- W4313313277 hasPrimaryLocation W43133132771 @default.
- W4313313277 hasRelatedWork W2130966263 @default.
- W4313313277 hasRelatedWork W2948753392 @default.
- W4313313277 hasRelatedWork W3005560537 @default.
- W4313313277 hasRelatedWork W3047094394 @default.
- W4313313277 hasRelatedWork W4206573979 @default.
- W4313313277 hasRelatedWork W4280503768 @default.
- W4313313277 hasRelatedWork W4280593074 @default.
- W4313313277 hasRelatedWork W4303684571 @default.
- W4313313277 hasRelatedWork W4360605300 @default.
- W4313313277 hasRelatedWork W4380789770 @default.
- W4313313277 hasVolume "215" @default.
- W4313313277 isParatext "false" @default.
- W4313313277 isRetracted "false" @default.
- W4313313277 workType "article" @default.