Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313315020> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4313315020 endingPage "868" @default.
- W4313315020 startingPage "856" @default.
- W4313315020 abstract "Most of the research on personal networking and deep learning have been conducted separately. Crossovers between the two fields have just emerged. This article provides a quick introduction to the fundamentals of deep learning, as well as the most recent advancements in the field. Other methodologies and platforms for deploying deep learning on personal network systems are also discussed and compared. Self-Sustained Personal Network (SSPN) is utilized for a wide range of networking functions, including computation, text analytics, and many more. Using deep learning approaches, this study demonstrates how to individualize personal networking activities in order to get the greatest performance in complicated settings with more efficient ones. Other features of deep learning modeling, such as supervised or unsupervised task learning skills with Generative Adversarial Networks (GAN), Convolutional Neural Network (CNN) and deep reinforcement learning, which aims to explain the capabilities of deep learning approaches to operate in an automated and intelligent way are described. Moreover, this research aims to provide the conceptual roadmap between network researchers to real-time networking practitioners who implement deep learning approaches in personal networks. As a result of the implementing deep learning algorithms into real time network installation, new and powerful tools have emerged. This research study develops an efficient learning protocol by predicting future traffic in the personal network using a time series forecast of past traffic. Furthermore, while the algorithm is run, the future personal network numbers are generated randomly. A deep learning method is used in the different algorithms to reduce the normalized mean square error. The correlation function and error histograms are shown in the results and discussion section. By examining the overlap between these modern trend algorithms for self- sustained personal networks, this research study tries to bridge the gap between the deep learning and computer networks." @default.
- W4313315020 created "2023-01-06" @default.
- W4313315020 creator A5047742096 @default.
- W4313315020 creator A5069305811 @default.
- W4313315020 creator A5081832823 @default.
- W4313315020 date "2022-01-01" @default.
- W4313315020 modified "2023-09-26" @default.
- W4313315020 title "Deep learning based Self-Sustained Personal Network" @default.
- W4313315020 cites W2014114959 @default.
- W4313315020 cites W2039175032 @default.
- W4313315020 cites W2095812537 @default.
- W4313315020 cites W2291426763 @default.
- W4313315020 cites W2565516711 @default.
- W4313315020 cites W2884358933 @default.
- W4313315020 cites W2890474333 @default.
- W4313315020 cites W2891113010 @default.
- W4313315020 cites W2919115771 @default.
- W4313315020 cites W2952602496 @default.
- W4313315020 cites W2962883549 @default.
- W4313315020 cites W2993407974 @default.
- W4313315020 cites W3023973440 @default.
- W4313315020 cites W3150736300 @default.
- W4313315020 doi "https://doi.org/10.1016/j.procs.2022.12.088" @default.
- W4313315020 hasPublicationYear "2022" @default.
- W4313315020 type Work @default.
- W4313315020 citedByCount "0" @default.
- W4313315020 crossrefType "journal-article" @default.
- W4313315020 hasAuthorship W4313315020A5047742096 @default.
- W4313315020 hasAuthorship W4313315020A5069305811 @default.
- W4313315020 hasAuthorship W4313315020A5081832823 @default.
- W4313315020 hasBestOaLocation W43133150201 @default.
- W4313315020 hasConcept C108583219 @default.
- W4313315020 hasConcept C119857082 @default.
- W4313315020 hasConcept C154945302 @default.
- W4313315020 hasConcept C202444582 @default.
- W4313315020 hasConcept C2522767166 @default.
- W4313315020 hasConcept C33923547 @default.
- W4313315020 hasConcept C41008148 @default.
- W4313315020 hasConcept C8038995 @default.
- W4313315020 hasConcept C81363708 @default.
- W4313315020 hasConcept C9652623 @default.
- W4313315020 hasConceptScore W4313315020C108583219 @default.
- W4313315020 hasConceptScore W4313315020C119857082 @default.
- W4313315020 hasConceptScore W4313315020C154945302 @default.
- W4313315020 hasConceptScore W4313315020C202444582 @default.
- W4313315020 hasConceptScore W4313315020C2522767166 @default.
- W4313315020 hasConceptScore W4313315020C33923547 @default.
- W4313315020 hasConceptScore W4313315020C41008148 @default.
- W4313315020 hasConceptScore W4313315020C8038995 @default.
- W4313315020 hasConceptScore W4313315020C81363708 @default.
- W4313315020 hasConceptScore W4313315020C9652623 @default.
- W4313315020 hasLocation W43133150201 @default.
- W4313315020 hasOpenAccess W4313315020 @default.
- W4313315020 hasPrimaryLocation W43133150201 @default.
- W4313315020 hasRelatedWork W2597787948 @default.
- W4313315020 hasRelatedWork W3123344745 @default.
- W4313315020 hasRelatedWork W3192794374 @default.
- W4313315020 hasRelatedWork W3208584567 @default.
- W4313315020 hasRelatedWork W4221031031 @default.
- W4313315020 hasRelatedWork W4246751904 @default.
- W4313315020 hasRelatedWork W4302303815 @default.
- W4313315020 hasRelatedWork W4312417841 @default.
- W4313315020 hasRelatedWork W4319781722 @default.
- W4313315020 hasRelatedWork W4321369474 @default.
- W4313315020 hasVolume "215" @default.
- W4313315020 isParatext "false" @default.
- W4313315020 isRetracted "false" @default.
- W4313315020 workType "article" @default.