Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313315027> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4313315027 endingPage "90" @default.
- W4313315027 startingPage "78" @default.
- W4313315027 abstract "Multi-label image recognition has gained significance in recent years due to its increase in employment in numerous domains. In multi-label object recognition, objects are recognized by creating a bounding box across every object present in the image and classifying the objects into specific labels. In this project, we propose a hybrid method implementing a transfer learning-based approach using four different Convolutional Neural Network (CNN) models namely Single-shot Detector (SSD), You Only Look Once (YOLO), RetinaNet, and, Faster R-CNN. Further, feature fusion is applied to learn all the image features from different layers. Since the transfer learning approach is utilized, we can train the pre-trained model precisely even with small amounts of data. Through this hybrid approach, we can achieve better accuracy in object recognition in the case of multi-labeled images compared to traditional methods" @default.
- W4313315027 created "2023-01-06" @default.
- W4313315027 creator A5031075659 @default.
- W4313315027 creator A5040625855 @default.
- W4313315027 creator A5053046091 @default.
- W4313315027 creator A5059290856 @default.
- W4313315027 creator A5060211659 @default.
- W4313315027 creator A5091188379 @default.
- W4313315027 date "2022-01-01" @default.
- W4313315027 modified "2023-09-26" @default.
- W4313315027 title "Hybrid Neural Network Architecture for Multi-Label Object Recognition using Feature Fusion" @default.
- W4313315027 cites W2093238926 @default.
- W4313315027 cites W2098676252 @default.
- W4313315027 cites W2580590036 @default.
- W4313315027 cites W2787397243 @default.
- W4313315027 cites W2893202042 @default.
- W4313315027 cites W2947746104 @default.
- W4313315027 cites W2970808747 @default.
- W4313315027 cites W3021494530 @default.
- W4313315027 cites W3025645599 @default.
- W4313315027 cites W3027532550 @default.
- W4313315027 cites W3038922275 @default.
- W4313315027 cites W3109350411 @default.
- W4313315027 cites W3134154885 @default.
- W4313315027 cites W4220783471 @default.
- W4313315027 doi "https://doi.org/10.1016/j.procs.2022.12.009" @default.
- W4313315027 hasPublicationYear "2022" @default.
- W4313315027 type Work @default.
- W4313315027 citedByCount "0" @default.
- W4313315027 crossrefType "journal-article" @default.
- W4313315027 hasAuthorship W4313315027A5031075659 @default.
- W4313315027 hasAuthorship W4313315027A5040625855 @default.
- W4313315027 hasAuthorship W4313315027A5053046091 @default.
- W4313315027 hasAuthorship W4313315027A5059290856 @default.
- W4313315027 hasAuthorship W4313315027A5060211659 @default.
- W4313315027 hasAuthorship W4313315027A5091188379 @default.
- W4313315027 hasBestOaLocation W43133150271 @default.
- W4313315027 hasConcept C115961682 @default.
- W4313315027 hasConcept C138885662 @default.
- W4313315027 hasConcept C147037132 @default.
- W4313315027 hasConcept C150899416 @default.
- W4313315027 hasConcept C153180895 @default.
- W4313315027 hasConcept C154945302 @default.
- W4313315027 hasConcept C2776151529 @default.
- W4313315027 hasConcept C2776401178 @default.
- W4313315027 hasConcept C2781238097 @default.
- W4313315027 hasConcept C31972630 @default.
- W4313315027 hasConcept C41008148 @default.
- W4313315027 hasConcept C41895202 @default.
- W4313315027 hasConcept C50644808 @default.
- W4313315027 hasConcept C63584917 @default.
- W4313315027 hasConcept C64876066 @default.
- W4313315027 hasConcept C81363708 @default.
- W4313315027 hasConceptScore W4313315027C115961682 @default.
- W4313315027 hasConceptScore W4313315027C138885662 @default.
- W4313315027 hasConceptScore W4313315027C147037132 @default.
- W4313315027 hasConceptScore W4313315027C150899416 @default.
- W4313315027 hasConceptScore W4313315027C153180895 @default.
- W4313315027 hasConceptScore W4313315027C154945302 @default.
- W4313315027 hasConceptScore W4313315027C2776151529 @default.
- W4313315027 hasConceptScore W4313315027C2776401178 @default.
- W4313315027 hasConceptScore W4313315027C2781238097 @default.
- W4313315027 hasConceptScore W4313315027C31972630 @default.
- W4313315027 hasConceptScore W4313315027C41008148 @default.
- W4313315027 hasConceptScore W4313315027C41895202 @default.
- W4313315027 hasConceptScore W4313315027C50644808 @default.
- W4313315027 hasConceptScore W4313315027C63584917 @default.
- W4313315027 hasConceptScore W4313315027C64876066 @default.
- W4313315027 hasConceptScore W4313315027C81363708 @default.
- W4313315027 hasLocation W43133150271 @default.
- W4313315027 hasOpenAccess W4313315027 @default.
- W4313315027 hasPrimaryLocation W43133150271 @default.
- W4313315027 hasRelatedWork W2095705906 @default.
- W4313315027 hasRelatedWork W2104921615 @default.
- W4313315027 hasRelatedWork W2540960825 @default.
- W4313315027 hasRelatedWork W2801801420 @default.
- W4313315027 hasRelatedWork W2921865287 @default.
- W4313315027 hasRelatedWork W2975200075 @default.
- W4313315027 hasRelatedWork W3130645678 @default.
- W4313315027 hasRelatedWork W3135818718 @default.
- W4313315027 hasRelatedWork W4285742308 @default.
- W4313315027 hasRelatedWork W4311223090 @default.
- W4313315027 hasVolume "215" @default.
- W4313315027 isParatext "false" @default.
- W4313315027 isRetracted "false" @default.
- W4313315027 workType "article" @default.