Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313315028> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4313315028 endingPage "70" @default.
- W4313315028 startingPage "61" @default.
- W4313315028 abstract "The Internet of Things (IoT) is an important and a major key component to support human life. Sensors are the sensing devices that play an important role in IoT to detect environmental conditions. The significance of IoT is increasing due to the increase in the things connected to the internet using Internet Protocol version-6 (IPv6). Low-Power and Lossy Network (LLN) Routers used in IoT environment have limited processing, memory, and energy resources and hence it can't use the traditional routing protocols such as Open Shortest Path First (OSPF), Routing Information Protocol (RIP), Ad Hoc On-Demand Distance Vector (AODV), Dynamic Source Routing(DSR) etc. However, Routing Protocol for Low power and Lossy Networks (RPL) is one of the prominent protocols which are developed to overcome the above issues but it could be exposed to specific types of attacks such as decreased rank attack, black hole attack, sinkhole attack, selective forwarding attack and version attacks, etc. Hence, it is necessary to develop a mechanism to detect and prevent such attacks. In this paper, efficient machine learning based Intrusion Detection System for Internet of Things is proposed to monitor the network activities against attacks and to detect the intruders more efficiently. This proposed machine learning based detection model performs feature selection and classification based on two new algorithms proposed in this paper called genetic recursive feature selection algorithm and fuzzy k-nearest neighbor classifier and detects the aforementioned attacks with maximum accuracy and minimum false positive rate. This work is also investigated on other performance metrics like precision, recall and F1-score to show the performance comparison between this proposed work with genetic recursive feature selection and fuzzy k-nearest neighbor classification algorithms and the existing works on intrusion detection." @default.
- W4313315028 created "2023-01-06" @default.
- W4313315028 creator A5006063494 @default.
- W4313315028 creator A5008316069 @default.
- W4313315028 creator A5010736265 @default.
- W4313315028 creator A5017525339 @default.
- W4313315028 creator A5075040831 @default.
- W4313315028 creator A5081410640 @default.
- W4313315028 date "2022-01-01" @default.
- W4313315028 modified "2023-09-26" @default.
- W4313315028 title "An Intelligent RPL attack detection using Machine Learning-Based Intrusion Detection System for Internet of Things" @default.
- W4313315028 cites W2370696599 @default.
- W4313315028 cites W2498575077 @default.
- W4313315028 cites W2908133708 @default.
- W4313315028 cites W2912292549 @default.
- W4313315028 cites W2999733746 @default.
- W4313315028 cites W3114932689 @default.
- W4313315028 cites W3137358777 @default.
- W4313315028 cites W3161578706 @default.
- W4313315028 cites W3168071334 @default.
- W4313315028 cites W3170696275 @default.
- W4313315028 cites W3195534890 @default.
- W4313315028 cites W4224255235 @default.
- W4313315028 doi "https://doi.org/10.1016/j.procs.2022.12.007" @default.
- W4313315028 hasPublicationYear "2022" @default.
- W4313315028 type Work @default.
- W4313315028 citedByCount "2" @default.
- W4313315028 countsByYear W43133150282023 @default.
- W4313315028 crossrefType "journal-article" @default.
- W4313315028 hasAuthorship W4313315028A5006063494 @default.
- W4313315028 hasAuthorship W4313315028A5008316069 @default.
- W4313315028 hasAuthorship W4313315028A5010736265 @default.
- W4313315028 hasAuthorship W4313315028A5017525339 @default.
- W4313315028 hasAuthorship W4313315028A5075040831 @default.
- W4313315028 hasAuthorship W4313315028A5081410640 @default.
- W4313315028 hasBestOaLocation W43133150281 @default.
- W4313315028 hasConcept C104954878 @default.
- W4313315028 hasConcept C110875604 @default.
- W4313315028 hasConcept C136764020 @default.
- W4313315028 hasConcept C154945302 @default.
- W4313315028 hasConcept C158379750 @default.
- W4313315028 hasConcept C202385902 @default.
- W4313315028 hasConcept C31258907 @default.
- W4313315028 hasConcept C35525427 @default.
- W4313315028 hasConcept C41008148 @default.
- W4313315028 hasConcept C84555802 @default.
- W4313315028 hasConcept C9659607 @default.
- W4313315028 hasConceptScore W4313315028C104954878 @default.
- W4313315028 hasConceptScore W4313315028C110875604 @default.
- W4313315028 hasConceptScore W4313315028C136764020 @default.
- W4313315028 hasConceptScore W4313315028C154945302 @default.
- W4313315028 hasConceptScore W4313315028C158379750 @default.
- W4313315028 hasConceptScore W4313315028C202385902 @default.
- W4313315028 hasConceptScore W4313315028C31258907 @default.
- W4313315028 hasConceptScore W4313315028C35525427 @default.
- W4313315028 hasConceptScore W4313315028C41008148 @default.
- W4313315028 hasConceptScore W4313315028C84555802 @default.
- W4313315028 hasConceptScore W4313315028C9659607 @default.
- W4313315028 hasLocation W43133150281 @default.
- W4313315028 hasOpenAccess W4313315028 @default.
- W4313315028 hasPrimaryLocation W43133150281 @default.
- W4313315028 hasRelatedWork W1994968148 @default.
- W4313315028 hasRelatedWork W2025363390 @default.
- W4313315028 hasRelatedWork W2163063991 @default.
- W4313315028 hasRelatedWork W2232133971 @default.
- W4313315028 hasRelatedWork W2382249057 @default.
- W4313315028 hasRelatedWork W2572729042 @default.
- W4313315028 hasRelatedWork W2794347061 @default.
- W4313315028 hasRelatedWork W2984935864 @default.
- W4313315028 hasRelatedWork W2994589634 @default.
- W4313315028 hasRelatedWork W4385871963 @default.
- W4313315028 hasVolume "215" @default.
- W4313315028 isParatext "false" @default.
- W4313315028 isRetracted "false" @default.
- W4313315028 workType "article" @default.