Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313315031> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4313315031 endingPage "528" @default.
- W4313315031 startingPage "519" @default.
- W4313315031 abstract "Cavities are the most prevalent consequence of dental caries, an infectious condition that weakens the structure of the teeth and may be spread from person to person. Research on dental caries, which is considered one of the most widespread problems with oral health, has been conducted with the purpose of early diagnosis owing to the discomfort and expense of treatment. In recent years, artificial intelligence has been utilized to construct models for estimating the probability of dental caries. In the current research work, the Machine learning technique has been provided as the prominent solution in providing the prediction model to detect dental caries. This research work reports a few machine learning algorithms such as Random Forest (RF), Decision Tree (DT), Logistic Regression (LR), and Naïve Bayes (NB) for providing a model for dental caries detection. Finally, the said algorithms are evaluated over the influencing parameters such as accuracy, precision, recall, F1-Score, and Mathews Correlation Coefficient (MCC). The empirical analysis shows that the DT provides a more accurate model with an accuracy level of 85.62%." @default.
- W4313315031 created "2023-01-06" @default.
- W4313315031 creator A5022194843 @default.
- W4313315031 creator A5028118756 @default.
- W4313315031 date "2022-01-01" @default.
- W4313315031 modified "2023-09-25" @default.
- W4313315031 title "A Comparative Study of Machine Learning Regression Approach on Dental Caries Detection" @default.
- W4313315031 cites W2174784305 @default.
- W4313315031 cites W2338271170 @default.
- W4313315031 cites W2606491090 @default.
- W4313315031 cites W2809254203 @default.
- W4313315031 cites W2809416758 @default.
- W4313315031 cites W2883741661 @default.
- W4313315031 cites W2902644322 @default.
- W4313315031 cites W2991580181 @default.
- W4313315031 cites W3036570640 @default.
- W4313315031 cites W3106057905 @default.
- W4313315031 cites W3154199616 @default.
- W4313315031 cites W3199492356 @default.
- W4313315031 doi "https://doi.org/10.1016/j.procs.2022.12.054" @default.
- W4313315031 hasPublicationYear "2022" @default.
- W4313315031 type Work @default.
- W4313315031 citedByCount "0" @default.
- W4313315031 crossrefType "journal-article" @default.
- W4313315031 hasAuthorship W4313315031A5022194843 @default.
- W4313315031 hasAuthorship W4313315031A5028118756 @default.
- W4313315031 hasBestOaLocation W43133150311 @default.
- W4313315031 hasConcept C100660578 @default.
- W4313315031 hasConcept C105795698 @default.
- W4313315031 hasConcept C107673813 @default.
- W4313315031 hasConcept C119857082 @default.
- W4313315031 hasConcept C12267149 @default.
- W4313315031 hasConcept C138885662 @default.
- W4313315031 hasConcept C151956035 @default.
- W4313315031 hasConcept C152877465 @default.
- W4313315031 hasConcept C154945302 @default.
- W4313315031 hasConcept C169258074 @default.
- W4313315031 hasConcept C199343813 @default.
- W4313315031 hasConcept C207201462 @default.
- W4313315031 hasConcept C33923547 @default.
- W4313315031 hasConcept C41008148 @default.
- W4313315031 hasConcept C41895202 @default.
- W4313315031 hasConcept C48921125 @default.
- W4313315031 hasConcept C52001869 @default.
- W4313315031 hasConcept C71924100 @default.
- W4313315031 hasConcept C81669768 @default.
- W4313315031 hasConcept C83546350 @default.
- W4313315031 hasConcept C84525736 @default.
- W4313315031 hasConceptScore W4313315031C100660578 @default.
- W4313315031 hasConceptScore W4313315031C105795698 @default.
- W4313315031 hasConceptScore W4313315031C107673813 @default.
- W4313315031 hasConceptScore W4313315031C119857082 @default.
- W4313315031 hasConceptScore W4313315031C12267149 @default.
- W4313315031 hasConceptScore W4313315031C138885662 @default.
- W4313315031 hasConceptScore W4313315031C151956035 @default.
- W4313315031 hasConceptScore W4313315031C152877465 @default.
- W4313315031 hasConceptScore W4313315031C154945302 @default.
- W4313315031 hasConceptScore W4313315031C169258074 @default.
- W4313315031 hasConceptScore W4313315031C199343813 @default.
- W4313315031 hasConceptScore W4313315031C207201462 @default.
- W4313315031 hasConceptScore W4313315031C33923547 @default.
- W4313315031 hasConceptScore W4313315031C41008148 @default.
- W4313315031 hasConceptScore W4313315031C41895202 @default.
- W4313315031 hasConceptScore W4313315031C48921125 @default.
- W4313315031 hasConceptScore W4313315031C52001869 @default.
- W4313315031 hasConceptScore W4313315031C71924100 @default.
- W4313315031 hasConceptScore W4313315031C81669768 @default.
- W4313315031 hasConceptScore W4313315031C83546350 @default.
- W4313315031 hasConceptScore W4313315031C84525736 @default.
- W4313315031 hasLocation W43133150311 @default.
- W4313315031 hasOpenAccess W4313315031 @default.
- W4313315031 hasPrimaryLocation W43133150311 @default.
- W4313315031 hasRelatedWork W3013497550 @default.
- W4313315031 hasRelatedWork W3082405293 @default.
- W4313315031 hasRelatedWork W3107429030 @default.
- W4313315031 hasRelatedWork W3137532542 @default.
- W4313315031 hasRelatedWork W3173590662 @default.
- W4313315031 hasRelatedWork W4214951795 @default.
- W4313315031 hasRelatedWork W4292865745 @default.
- W4313315031 hasRelatedWork W4382585365 @default.
- W4313315031 hasRelatedWork W4383535405 @default.
- W4313315031 hasRelatedWork W4386462655 @default.
- W4313315031 hasVolume "215" @default.
- W4313315031 isParatext "false" @default.
- W4313315031 isRetracted "false" @default.
- W4313315031 workType "article" @default.