Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313328020> ?p ?o ?g. }
- W4313328020 endingPage "23" @default.
- W4313328020 startingPage "23" @default.
- W4313328020 abstract "Accurate and continuous monitoring of crop growth is vital for the development of precision agriculture. Unmanned aerial vehicle (UAV) and satellite platforms have considerable complementarity in high spatial resolution (centimeter-scale) and fixed revisit cycle. It is meaningful to optimize the cross-platform synergy for agricultural applications. Considering the characteristics of UAV and satellite platforms, a spatio-temporal fusion (STF) framework of UAV and satellite imagery is developed. It includes registration, radiometric normalization, preliminary fusion, and reflectance reconstruction. The proposed STF framework significantly improves the fusion accuracy with both better quantitative metrics and visualized results compared with four existing STF methods with different fusion strategies. Especially for the prediction of object boundary and spatial texture, the absolute values of Robert’s edge (EDGE) and local binary pattern (LBP) decreased by a maximum of more than 0.25 and 0.10, respectively, compared with the spatial and temporal adaptive reflectance fusion model (STARFM). Moreover, the STF framework enhances the temporal resolution to daily, although the satellite imagery is discontinuous. Further, its application potential for winter wheat growth monitoring is explored. The daily synthetic imagery with UAV spatial resolution describes the seasonal dynamics of winter wheat well. The synthetic Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index 2 (EVI2) are consistent with the observations. However, the error in NDVI and EVI2 at boundary changes is relatively large, which needs further exploration. This research provides an STF framework to generate very dense and high-spatial-resolution remote sensing data at a low cost. It not only contributes to precision agriculture applications, but also is valuable for land-surface dynamic monitoring." @default.
- W4313328020 created "2023-01-06" @default.
- W4313328020 creator A5004073729 @default.
- W4313328020 creator A5013019306 @default.
- W4313328020 creator A5046597133 @default.
- W4313328020 creator A5056840064 @default.
- W4313328020 creator A5078092833 @default.
- W4313328020 creator A5078835872 @default.
- W4313328020 creator A5090454827 @default.
- W4313328020 date "2022-12-29" @default.
- W4313328020 modified "2023-09-30" @default.
- W4313328020 title "A Spatio-Temporal Fusion Framework of UAV and Satellite Imagery for Winter Wheat Growth Monitoring" @default.
- W4313328020 cites W2018636632 @default.
- W4313328020 cites W2021494835 @default.
- W4313328020 cites W2031596845 @default.
- W4313328020 cites W2056811372 @default.
- W4313328020 cites W2063623478 @default.
- W4313328020 cites W2088603520 @default.
- W4313328020 cites W2094677081 @default.
- W4313328020 cites W2124073857 @default.
- W4313328020 cites W2200350976 @default.
- W4313328020 cites W2557818291 @default.
- W4313328020 cites W2737544618 @default.
- W4313328020 cites W2767886251 @default.
- W4313328020 cites W2908713119 @default.
- W4313328020 cites W2913229076 @default.
- W4313328020 cites W2943316090 @default.
- W4313328020 cites W2955856672 @default.
- W4313328020 cites W2971382989 @default.
- W4313328020 cites W2985998130 @default.
- W4313328020 cites W2995803192 @default.
- W4313328020 cites W3019576236 @default.
- W4313328020 cites W3020212216 @default.
- W4313328020 cites W3037264916 @default.
- W4313328020 cites W3046571487 @default.
- W4313328020 cites W3096444413 @default.
- W4313328020 cites W3097245543 @default.
- W4313328020 cites W3117626144 @default.
- W4313328020 cites W3121378357 @default.
- W4313328020 cites W3131169444 @default.
- W4313328020 cites W3162501010 @default.
- W4313328020 cites W3203535769 @default.
- W4313328020 cites W4205262091 @default.
- W4313328020 cites W4210565498 @default.
- W4313328020 cites W4220732734 @default.
- W4313328020 cites W4280604634 @default.
- W4313328020 cites W4280630127 @default.
- W4313328020 cites W4281629072 @default.
- W4313328020 cites W4285801172 @default.
- W4313328020 cites W4289522446 @default.
- W4313328020 cites W4295857038 @default.
- W4313328020 cites W4296363531 @default.
- W4313328020 doi "https://doi.org/10.3390/drones7010023" @default.
- W4313328020 hasPublicationYear "2022" @default.
- W4313328020 type Work @default.
- W4313328020 citedByCount "3" @default.
- W4313328020 countsByYear W43133280202023 @default.
- W4313328020 crossrefType "journal-article" @default.
- W4313328020 hasAuthorship W4313328020A5004073729 @default.
- W4313328020 hasAuthorship W4313328020A5013019306 @default.
- W4313328020 hasAuthorship W4313328020A5046597133 @default.
- W4313328020 hasAuthorship W4313328020A5056840064 @default.
- W4313328020 hasAuthorship W4313328020A5078092833 @default.
- W4313328020 hasAuthorship W4313328020A5078835872 @default.
- W4313328020 hasAuthorship W4313328020A5090454827 @default.
- W4313328020 hasBestOaLocation W43133280201 @default.
- W4313328020 hasConcept C119666444 @default.
- W4313328020 hasConcept C121332964 @default.
- W4313328020 hasConcept C127413603 @default.
- W4313328020 hasConcept C136886441 @default.
- W4313328020 hasConcept C138885662 @default.
- W4313328020 hasConcept C144024400 @default.
- W4313328020 hasConcept C146978453 @default.
- W4313328020 hasConcept C1549246 @default.
- W4313328020 hasConcept C154945302 @default.
- W4313328020 hasConcept C158525013 @default.
- W4313328020 hasConcept C18903297 @default.
- W4313328020 hasConcept C19165224 @default.
- W4313328020 hasConcept C19269812 @default.
- W4313328020 hasConcept C205372480 @default.
- W4313328020 hasConcept C205649164 @default.
- W4313328020 hasConcept C25989453 @default.
- W4313328020 hasConcept C2778102629 @default.
- W4313328020 hasConcept C33954974 @default.
- W4313328020 hasConcept C39432304 @default.
- W4313328020 hasConcept C41008148 @default.
- W4313328020 hasConcept C41895202 @default.
- W4313328020 hasConcept C62520636 @default.
- W4313328020 hasConcept C62649853 @default.
- W4313328020 hasConcept C86803240 @default.
- W4313328020 hasConceptScore W4313328020C119666444 @default.
- W4313328020 hasConceptScore W4313328020C121332964 @default.
- W4313328020 hasConceptScore W4313328020C127413603 @default.
- W4313328020 hasConceptScore W4313328020C136886441 @default.
- W4313328020 hasConceptScore W4313328020C138885662 @default.
- W4313328020 hasConceptScore W4313328020C144024400 @default.
- W4313328020 hasConceptScore W4313328020C146978453 @default.
- W4313328020 hasConceptScore W4313328020C1549246 @default.