Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313328066> ?p ?o ?g. }
- W4313328066 endingPage "17" @default.
- W4313328066 startingPage "17" @default.
- W4313328066 abstract "This paper investigates the short-term wind farm generation forecast. It is observed from the real wind farm generation measurements that wind farm generation exhibits distinct features, such as the non-stationarity and the heterogeneous dynamics of ramp and non-ramp events across different classes of wind turbines. To account for the distinct features of wind farm generation, we propose a Drifting Streaming Peaks-over-Threshold (DSPOT)-enhanced self-evolving neural networks-based short-term wind farm generation forecast. Using DSPOT, the proposed method first classifies the wind farm generation data into ramp and non-ramp datasets, where time-varying dynamics are taken into account by utilizing dynamic ramp thresholds to separate the ramp and non-ramp events. We then train different neural networks based on each dataset to learn the different dynamics of wind farm generation by the NeuroEvolution of Augmenting Topologies (NEAT), which can obtain the best network topology and weighting parameters. As the efficacy of the neural networks relies on the quality of the training datasets (i.e., the classification accuracy of the ramp and non-ramp events), a Bayesian optimization-based approach is developed to optimize the parameters of DSPOT to enhance the quality of the training datasets and the corresponding performance of the neural networks. Based on the developed self-evolving neural networks, both distributional and point forecasts are developed. The experimental results show that compared with other forecast approaches, the proposed forecast approach can substantially improve the forecast accuracy, especially for ramp events. The experiment results indicate that the accuracy improvement in a 60 min horizon forecast in terms of the mean absolute error (MAE) is at least 33.6% for the whole year data and at least 37% for the ramp events. Moreover, the distributional forecast in terms of the continuous rank probability score (CRPS) is improved by at least 35.8% for the whole year data and at least 35.2% for the ramp events." @default.
- W4313328066 created "2023-01-06" @default.
- W4313328066 creator A5030959416 @default.
- W4313328066 creator A5058558377 @default.
- W4313328066 creator A5072565301 @default.
- W4313328066 date "2022-12-28" @default.
- W4313328066 modified "2023-10-18" @default.
- W4313328066 title "Drifting Streaming Peaks-Over-Threshold-Enhanced Self-Evolving Neural Networks for Short-Term Wind Farm Generation Forecast" @default.
- W4313328066 cites W1895396664 @default.
- W4313328066 cites W1992262101 @default.
- W4313328066 cites W2006558836 @default.
- W4313328066 cites W2044735270 @default.
- W4313328066 cites W2051086873 @default.
- W4313328066 cites W2058922249 @default.
- W4313328066 cites W2066890570 @default.
- W4313328066 cites W2074715647 @default.
- W4313328066 cites W2097571405 @default.
- W4313328066 cites W2098394615 @default.
- W4313328066 cites W2101222734 @default.
- W4313328066 cites W2111935653 @default.
- W4313328066 cites W2128254988 @default.
- W4313328066 cites W2131426807 @default.
- W4313328066 cites W2257979135 @default.
- W4313328066 cites W2291701686 @default.
- W4313328066 cites W2345862676 @default.
- W4313328066 cites W2560370080 @default.
- W4313328066 cites W2566003805 @default.
- W4313328066 cites W2618530766 @default.
- W4313328066 cites W2748023122 @default.
- W4313328066 cites W2896920734 @default.
- W4313328066 cites W2901240220 @default.
- W4313328066 cites W2909059409 @default.
- W4313328066 cites W2939951026 @default.
- W4313328066 cites W2950418200 @default.
- W4313328066 cites W2963143606 @default.
- W4313328066 cites W2989725176 @default.
- W4313328066 cites W3010938659 @default.
- W4313328066 cites W3088707425 @default.
- W4313328066 cites W3117926536 @default.
- W4313328066 cites W3121826667 @default.
- W4313328066 cites W3122100638 @default.
- W4313328066 cites W3129717211 @default.
- W4313328066 cites W3132882148 @default.
- W4313328066 cites W3137520600 @default.
- W4313328066 cites W3142970463 @default.
- W4313328066 cites W3204416855 @default.
- W4313328066 cites W3207915272 @default.
- W4313328066 cites W3215693540 @default.
- W4313328066 cites W4226263724 @default.
- W4313328066 cites W4255884202 @default.
- W4313328066 cites W4282980803 @default.
- W4313328066 cites W4313001218 @default.
- W4313328066 doi "https://doi.org/10.3390/fi15010017" @default.
- W4313328066 hasPublicationYear "2022" @default.
- W4313328066 type Work @default.
- W4313328066 citedByCount "0" @default.
- W4313328066 crossrefType "journal-article" @default.
- W4313328066 hasAuthorship W4313328066A5030959416 @default.
- W4313328066 hasAuthorship W4313328066A5058558377 @default.
- W4313328066 hasAuthorship W4313328066A5072565301 @default.
- W4313328066 hasBestOaLocation W43133280661 @default.
- W4313328066 hasConcept C119599485 @default.
- W4313328066 hasConcept C121332964 @default.
- W4313328066 hasConcept C126838900 @default.
- W4313328066 hasConcept C127413603 @default.
- W4313328066 hasConcept C153294291 @default.
- W4313328066 hasConcept C154945302 @default.
- W4313328066 hasConcept C161067210 @default.
- W4313328066 hasConcept C183115368 @default.
- W4313328066 hasConcept C41008148 @default.
- W4313328066 hasConcept C50644808 @default.
- W4313328066 hasConcept C61797465 @default.
- W4313328066 hasConcept C62520636 @default.
- W4313328066 hasConcept C71924100 @default.
- W4313328066 hasConcept C78600449 @default.
- W4313328066 hasConceptScore W4313328066C119599485 @default.
- W4313328066 hasConceptScore W4313328066C121332964 @default.
- W4313328066 hasConceptScore W4313328066C126838900 @default.
- W4313328066 hasConceptScore W4313328066C127413603 @default.
- W4313328066 hasConceptScore W4313328066C153294291 @default.
- W4313328066 hasConceptScore W4313328066C154945302 @default.
- W4313328066 hasConceptScore W4313328066C161067210 @default.
- W4313328066 hasConceptScore W4313328066C183115368 @default.
- W4313328066 hasConceptScore W4313328066C41008148 @default.
- W4313328066 hasConceptScore W4313328066C50644808 @default.
- W4313328066 hasConceptScore W4313328066C61797465 @default.
- W4313328066 hasConceptScore W4313328066C62520636 @default.
- W4313328066 hasConceptScore W4313328066C71924100 @default.
- W4313328066 hasConceptScore W4313328066C78600449 @default.
- W4313328066 hasFunder F4320306076 @default.
- W4313328066 hasIssue "1" @default.
- W4313328066 hasLocation W43133280661 @default.
- W4313328066 hasOpenAccess W4313328066 @default.
- W4313328066 hasPrimaryLocation W43133280661 @default.
- W4313328066 hasRelatedWork W2025954161 @default.
- W4313328066 hasRelatedWork W2029970789 @default.
- W4313328066 hasRelatedWork W2043505748 @default.
- W4313328066 hasRelatedWork W2242618928 @default.