Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313328082> ?p ?o ?g. }
- W4313328082 endingPage "124" @default.
- W4313328082 startingPage "124" @default.
- W4313328082 abstract "The long-term spectral characteristics of the bare soil surface (BSS) in the BLUE, GREEN, RED, NIR, SWIR1, and SWIR2 Landsat spectral bands are poorly studied. Most often, the RED and NIR spectral bands are used to analyze the spatial heterogeneity of the soil cover; in our opinion, it is outmoded and seems unreasonable. The study of multi-temporal spectral characteristics requires the processing of big remote sensing data based on artificial intelligence in the form of convolutional neural networks. The analysis of BSS belongs to the direct methods of analysis of the soil cover. Soil degradation can be detected by ground methods (field reconnaissance surveys), modeling, or digital methods, and based on the remote sensing data (RSD) analysis. Ground methods are laborious, and modeling gives indirect results. RSD analysis can be based on the principles of calculation of vegetation indices (VIs) and on the BSS identification. The calculation of VIs also provides indirect information about the soil cover through the state of vegetation. BSS analysis is a direct method for analyzing soil cover heterogeneity. In this work, the informativeness of the long-term (37 years) average spectral characteristics of the BLUE, GREEN, RED, NIR, SWIR1 and SWIR2 bands of the Landsat 4–8 satellites for detecting areas of soil degradation with recognition of the BSS using deep machine learning methods was estimated. The objects of study are the spectral characteristics of kastanozems (dark chestnut soils) in the south of Russia in the territory of the Morozovsky district of the Rostov region. Soil degradation in this area is mainly caused by erosion. The following methods were used: retrospective monitoring of soil and land cover, deep machine learning using convolutional neural networks, and cartographic analysis. Six new maps of the average long-term spectral brightness of the BSS have been obtained. The information content of the BSS for six spectral bands has been verified on the basis of ground surveys. The informativeness was determined by the percentage of coincidences of degradation facts identified during the RSD analysis, and those determined in the field. It has been established that the spectral bands line up in the following descending order of information content: RED, NIR, GREEN, BLUE, SWIR1, SWIR2. The accuracy of degradation maps by band was determined as: RED—84.6%, NIR—82.9%, GREEN—78.0%, BLUE—78.0%, SWIR1—75.5%, SWIR2—62.2%." @default.
- W4313328082 created "2023-01-06" @default.
- W4313328082 creator A5008003532 @default.
- W4313328082 creator A5016809737 @default.
- W4313328082 creator A5022918110 @default.
- W4313328082 creator A5090408743 @default.
- W4313328082 date "2022-12-26" @default.
- W4313328082 modified "2023-10-18" @default.
- W4313328082 title "Informativeness of the Long-Term Average Spectral Characteristics of the Bare Soil Surface for the Detection of Soil Cover Degradation with the Neural Network Filtering of Remote Sensing Data" @default.
- W4313328082 cites W1483167319 @default.
- W4313328082 cites W1968183001 @default.
- W4313328082 cites W1992050370 @default.
- W4313328082 cites W2004084489 @default.
- W4313328082 cites W2016478722 @default.
- W4313328082 cites W2016850795 @default.
- W4313328082 cites W2034650341 @default.
- W4313328082 cites W2036890598 @default.
- W4313328082 cites W2076516158 @default.
- W4313328082 cites W2080976015 @default.
- W4313328082 cites W2083665758 @default.
- W4313328082 cites W2091160252 @default.
- W4313328082 cites W2104487864 @default.
- W4313328082 cites W2139584183 @default.
- W4313328082 cites W2225486151 @default.
- W4313328082 cites W2234172155 @default.
- W4313328082 cites W2346072817 @default.
- W4313328082 cites W2462318639 @default.
- W4313328082 cites W2486683043 @default.
- W4313328082 cites W2516896048 @default.
- W4313328082 cites W2554763618 @default.
- W4313328082 cites W2599569383 @default.
- W4313328082 cites W2609791289 @default.
- W4313328082 cites W2612222728 @default.
- W4313328082 cites W2757787785 @default.
- W4313328082 cites W2761408394 @default.
- W4313328082 cites W2793557935 @default.
- W4313328082 cites W2805267014 @default.
- W4313328082 cites W2806480185 @default.
- W4313328082 cites W2884436604 @default.
- W4313328082 cites W2885322367 @default.
- W4313328082 cites W2886554959 @default.
- W4313328082 cites W2896600083 @default.
- W4313328082 cites W2898962279 @default.
- W4313328082 cites W2901103701 @default.
- W4313328082 cites W2914757358 @default.
- W4313328082 cites W2919764574 @default.
- W4313328082 cites W2965726005 @default.
- W4313328082 cites W2995374761 @default.
- W4313328082 cites W3000586955 @default.
- W4313328082 cites W3008439211 @default.
- W4313328082 cites W3014625803 @default.
- W4313328082 cites W3014864562 @default.
- W4313328082 cites W3024391372 @default.
- W4313328082 cites W3064900474 @default.
- W4313328082 cites W3097355930 @default.
- W4313328082 cites W3112139896 @default.
- W4313328082 cites W3119837698 @default.
- W4313328082 cites W3120107013 @default.
- W4313328082 cites W3123219997 @default.
- W4313328082 cites W3124166631 @default.
- W4313328082 cites W3129641081 @default.
- W4313328082 cites W3135458857 @default.
- W4313328082 cites W3143984685 @default.
- W4313328082 cites W3161672094 @default.
- W4313328082 cites W3164867201 @default.
- W4313328082 cites W3170297668 @default.
- W4313328082 cites W3190203661 @default.
- W4313328082 cites W4200172685 @default.
- W4313328082 cites W4210514068 @default.
- W4313328082 cites W4213240490 @default.
- W4313328082 cites W4229365818 @default.
- W4313328082 cites W4287218822 @default.
- W4313328082 doi "https://doi.org/10.3390/rs15010124" @default.
- W4313328082 hasPublicationYear "2022" @default.
- W4313328082 type Work @default.
- W4313328082 citedByCount "0" @default.
- W4313328082 crossrefType "journal-article" @default.
- W4313328082 hasAuthorship W4313328082A5008003532 @default.
- W4313328082 hasAuthorship W4313328082A5016809737 @default.
- W4313328082 hasAuthorship W4313328082A5022918110 @default.
- W4313328082 hasAuthorship W4313328082A5090408743 @default.
- W4313328082 hasBestOaLocation W43133280821 @default.
- W4313328082 hasConcept C127313418 @default.
- W4313328082 hasConcept C142724271 @default.
- W4313328082 hasConcept C159390177 @default.
- W4313328082 hasConcept C2776133958 @default.
- W4313328082 hasConcept C39432304 @default.
- W4313328082 hasConcept C62649853 @default.
- W4313328082 hasConcept C71924100 @default.
- W4313328082 hasConceptScore W4313328082C127313418 @default.
- W4313328082 hasConceptScore W4313328082C142724271 @default.
- W4313328082 hasConceptScore W4313328082C159390177 @default.
- W4313328082 hasConceptScore W4313328082C2776133958 @default.
- W4313328082 hasConceptScore W4313328082C39432304 @default.
- W4313328082 hasConceptScore W4313328082C62649853 @default.
- W4313328082 hasConceptScore W4313328082C71924100 @default.
- W4313328082 hasFunder F4320324099 @default.
- W4313328082 hasIssue "1" @default.