Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313328786> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4313328786 endingPage "5965" @default.
- W4313328786 startingPage "5951" @default.
- W4313328786 abstract "With the popularity of online payment, how to perform credit card fraud detection more accurately has also become a hot issue. And with the emergence of the adaptive boosting algorithm (Adaboost), credit card fraud detection has started to use this method in large numbers, but the traditional Adaboost is prone to overfitting in the presence of noisy samples. Therefore, in order to alleviate this phenomenon, this paper proposes a new idea: using the number of consecutive sample misclassifications to determine the noisy samples, while constructing a penalty factor to reconstruct the sample weight assignment. Firstly, the theoretical analysis shows that the traditional Adaboost method is overfitting in a noisy training set, which leads to the degradation of classification accuracy. To this end, the penalty factor constructed by the number of consecutive misclassifications of samples is used to reconstruct the sample weight assignment to prevent the classifier from over-focusing on noisy samples, and its reasonableness is demonstrated. Then, by comparing the penalty strength of the three different penalty factors proposed in this paper, a more reasonable penalty factor is selected. Meanwhile, in order to make the constructed model more in line with the actual requirements on training time consumption, the Adaboost algorithm with adaptive weight trimming (AWTAdaboost) is used in this paper, so the penalty factor-based AWTAdaboost (PF_AWTAdaboost) is finally obtained. Finally, PF_AWTAdaboost is experimentally validated against other traditional machine learning algorithms on credit card fraud datasets and other datasets. The results show that the PF_AWTAdaboost method has better performance, including detection accuracy, model recall and robustness, than other methods on the credit card fraud dataset. And the PF_AWTAdaboost method also shows excellent generalization performance on other datasets. From the experimental results, it is shown that the PF_AWTAdaboost algorithm has better classification performance." @default.
- W4313328786 created "2023-01-06" @default.
- W4313328786 creator A5001898297 @default.
- W4313328786 creator A5002510823 @default.
- W4313328786 creator A5039812037 @default.
- W4313328786 creator A5057880749 @default.
- W4313328786 creator A5086820941 @default.
- W4313328786 date "2023-01-01" @default.
- W4313328786 modified "2023-10-18" @default.
- W4313328786 title "A Credit Card Fraud Model Prediction Method Based on Penalty Factor Optimization AWTadaboost" @default.
- W4313328786 cites W1974445444 @default.
- W4313328786 cites W1988790447 @default.
- W4313328786 cites W2024046085 @default.
- W4313328786 cites W2785637175 @default.
- W4313328786 cites W2912963963 @default.
- W4313328786 cites W2997200731 @default.
- W4313328786 cites W3004732066 @default.
- W4313328786 cites W3197309288 @default.
- W4313328786 cites W3208379990 @default.
- W4313328786 cites W4206393156 @default.
- W4313328786 cites W4212968553 @default.
- W4313328786 cites W4214628066 @default.
- W4313328786 doi "https://doi.org/10.32604/cmc.2023.035558" @default.
- W4313328786 hasPublicationYear "2023" @default.
- W4313328786 type Work @default.
- W4313328786 citedByCount "1" @default.
- W4313328786 countsByYear W43133287862023 @default.
- W4313328786 crossrefType "journal-article" @default.
- W4313328786 hasAuthorship W4313328786A5001898297 @default.
- W4313328786 hasAuthorship W4313328786A5002510823 @default.
- W4313328786 hasAuthorship W4313328786A5039812037 @default.
- W4313328786 hasAuthorship W4313328786A5057880749 @default.
- W4313328786 hasAuthorship W4313328786A5086820941 @default.
- W4313328786 hasBestOaLocation W43133287861 @default.
- W4313328786 hasConcept C119857082 @default.
- W4313328786 hasConcept C126255220 @default.
- W4313328786 hasConcept C136764020 @default.
- W4313328786 hasConcept C141404830 @default.
- W4313328786 hasConcept C145097563 @default.
- W4313328786 hasConcept C153180895 @default.
- W4313328786 hasConcept C154945302 @default.
- W4313328786 hasConcept C185592680 @default.
- W4313328786 hasConcept C198531522 @default.
- W4313328786 hasConcept C22019652 @default.
- W4313328786 hasConcept C2780747020 @default.
- W4313328786 hasConcept C2983355114 @default.
- W4313328786 hasConcept C33923547 @default.
- W4313328786 hasConcept C41008148 @default.
- W4313328786 hasConcept C43617362 @default.
- W4313328786 hasConcept C50644808 @default.
- W4313328786 hasConcept C6180225 @default.
- W4313328786 hasConcept C95623464 @default.
- W4313328786 hasConceptScore W4313328786C119857082 @default.
- W4313328786 hasConceptScore W4313328786C126255220 @default.
- W4313328786 hasConceptScore W4313328786C136764020 @default.
- W4313328786 hasConceptScore W4313328786C141404830 @default.
- W4313328786 hasConceptScore W4313328786C145097563 @default.
- W4313328786 hasConceptScore W4313328786C153180895 @default.
- W4313328786 hasConceptScore W4313328786C154945302 @default.
- W4313328786 hasConceptScore W4313328786C185592680 @default.
- W4313328786 hasConceptScore W4313328786C198531522 @default.
- W4313328786 hasConceptScore W4313328786C22019652 @default.
- W4313328786 hasConceptScore W4313328786C2780747020 @default.
- W4313328786 hasConceptScore W4313328786C2983355114 @default.
- W4313328786 hasConceptScore W4313328786C33923547 @default.
- W4313328786 hasConceptScore W4313328786C41008148 @default.
- W4313328786 hasConceptScore W4313328786C43617362 @default.
- W4313328786 hasConceptScore W4313328786C50644808 @default.
- W4313328786 hasConceptScore W4313328786C6180225 @default.
- W4313328786 hasConceptScore W4313328786C95623464 @default.
- W4313328786 hasIssue "3" @default.
- W4313328786 hasLocation W43133287861 @default.
- W4313328786 hasOpenAccess W4313328786 @default.
- W4313328786 hasPrimaryLocation W43133287861 @default.
- W4313328786 hasRelatedWork W1996541855 @default.
- W4313328786 hasRelatedWork W2742991909 @default.
- W4313328786 hasRelatedWork W2989932438 @default.
- W4313328786 hasRelatedWork W3142722547 @default.
- W4313328786 hasRelatedWork W3153799676 @default.
- W4313328786 hasRelatedWork W4206464561 @default.
- W4313328786 hasRelatedWork W4225146313 @default.
- W4313328786 hasRelatedWork W4312452763 @default.
- W4313328786 hasRelatedWork W4313328786 @default.
- W4313328786 hasRelatedWork W4362725573 @default.
- W4313328786 hasVolume "74" @default.
- W4313328786 isParatext "false" @default.
- W4313328786 isRetracted "false" @default.
- W4313328786 workType "article" @default.