Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313331611> ?p ?o ?g. }
- W4313331611 abstract "Accurate classification of sites of interest on prostate-specific membrane antigen (PSMA) positron emission tomography (PET) images is an important diagnostic requirement for the differentiation of prostate cancer (PCa) from foci of physiologic uptake. We developed a deep learning and radiomics framework to perform lesion-level and patient-level classification on PSMA PET images of patients with PCa.This was an IRB-approved, HIPAA-compliant, retrospective study. Lesions on [18F]DCFPyL PET/CT scans were assigned to PSMA reporting and data system (PSMA-RADS) categories and randomly partitioned into training, validation, and test sets. The framework extracted image features, radiomic features, and tissue type information from a cropped PET image slice containing a lesion and performed PSMA-RADS and PCa classification. Performance was evaluated by assessing the area under the receiver operating characteristic curve (AUROC). A t-distributed stochastic neighbor embedding (t-SNE) analysis was performed. Confidence and probability scores were measured. Statistical significance was determined using a two-tailed t test.PSMA PET scans from 267 men with PCa had 3794 lesions assigned to PSMA-RADS categories. The framework yielded AUROC values of 0.87 and 0.90 for lesion-level and patient-level PSMA-RADS classification, respectively, on the test set. The framework yielded AUROC values of 0.92 and 0.85 for lesion-level and patient-level PCa classification, respectively, on the test set. A t-SNE analysis revealed learned relationships between the PSMA-RADS categories and disease findings. Mean confidence scores reflected the expected accuracy and were significantly higher for correct predictions than for incorrect predictions (P < 0.05). Measured probability scores reflected the likelihood of PCa consistent with the PSMA-RADS framework.The framework provided lesion-level and patient-level PSMA-RADS and PCa classification on PSMA PET images. The framework was interpretable and provided confidence and probability scores that may assist physicians in making more informed clinical decisions." @default.
- W4313331611 created "2023-01-06" @default.
- W4313331611 creator A5008823683 @default.
- W4313331611 creator A5016023538 @default.
- W4313331611 creator A5031324764 @default.
- W4313331611 creator A5035643040 @default.
- W4313331611 creator A5038646922 @default.
- W4313331611 creator A5049568817 @default.
- W4313331611 creator A5050587380 @default.
- W4313331611 creator A5060102332 @default.
- W4313331611 creator A5062345180 @default.
- W4313331611 creator A5067187971 @default.
- W4313331611 creator A5069903670 @default.
- W4313331611 creator A5071268553 @default.
- W4313331611 creator A5081278059 @default.
- W4313331611 creator A5084422985 @default.
- W4313331611 creator A5087520734 @default.
- W4313331611 date "2022-12-29" @default.
- W4313331611 modified "2023-10-16" @default.
- W4313331611 title "Deep learning and radiomics framework for PSMA-RADS classification of prostate cancer on PSMA PET" @default.
- W4313331611 cites W1984908922 @default.
- W4313331611 cites W2287868019 @default.
- W4313331611 cites W2326657743 @default.
- W4313331611 cites W2468071338 @default.
- W4313331611 cites W2554535346 @default.
- W4313331611 cites W2582409643 @default.
- W4313331611 cites W2740524391 @default.
- W4313331611 cites W2755012395 @default.
- W4313331611 cites W2767225568 @default.
- W4313331611 cites W2799900537 @default.
- W4313331611 cites W2803760365 @default.
- W4313331611 cites W2807086064 @default.
- W4313331611 cites W2891574431 @default.
- W4313331611 cites W2900422713 @default.
- W4313331611 cites W2904319976 @default.
- W4313331611 cites W2908908919 @default.
- W4313331611 cites W2918598437 @default.
- W4313331611 cites W2976273049 @default.
- W4313331611 cites W2979317450 @default.
- W4313331611 cites W2980259907 @default.
- W4313331611 cites W2989747508 @default.
- W4313331611 cites W3013251573 @default.
- W4313331611 cites W3015168408 @default.
- W4313331611 cites W3023993509 @default.
- W4313331611 cites W3028808772 @default.
- W4313331611 cites W3046865842 @default.
- W4313331611 cites W3118929067 @default.
- W4313331611 cites W3137616427 @default.
- W4313331611 cites W3138937004 @default.
- W4313331611 cites W3154435685 @default.
- W4313331611 cites W3172367793 @default.
- W4313331611 cites W3182064216 @default.
- W4313331611 cites W3184577921 @default.
- W4313331611 cites W3198678954 @default.
- W4313331611 cites W4206841660 @default.
- W4313331611 cites W4224944556 @default.
- W4313331611 cites W4291392332 @default.
- W4313331611 cites W4307995537 @default.
- W4313331611 doi "https://doi.org/10.1186/s13550-022-00948-1" @default.
- W4313331611 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36580220" @default.
- W4313331611 hasPublicationYear "2022" @default.
- W4313331611 type Work @default.
- W4313331611 citedByCount "5" @default.
- W4313331611 countsByYear W43133316112023 @default.
- W4313331611 crossrefType "journal-article" @default.
- W4313331611 hasAuthorship W4313331611A5008823683 @default.
- W4313331611 hasAuthorship W4313331611A5016023538 @default.
- W4313331611 hasAuthorship W4313331611A5031324764 @default.
- W4313331611 hasAuthorship W4313331611A5035643040 @default.
- W4313331611 hasAuthorship W4313331611A5038646922 @default.
- W4313331611 hasAuthorship W4313331611A5049568817 @default.
- W4313331611 hasAuthorship W4313331611A5050587380 @default.
- W4313331611 hasAuthorship W4313331611A5060102332 @default.
- W4313331611 hasAuthorship W4313331611A5062345180 @default.
- W4313331611 hasAuthorship W4313331611A5067187971 @default.
- W4313331611 hasAuthorship W4313331611A5069903670 @default.
- W4313331611 hasAuthorship W4313331611A5071268553 @default.
- W4313331611 hasAuthorship W4313331611A5081278059 @default.
- W4313331611 hasAuthorship W4313331611A5084422985 @default.
- W4313331611 hasAuthorship W4313331611A5087520734 @default.
- W4313331611 hasBestOaLocation W43133316111 @default.
- W4313331611 hasConcept C121608353 @default.
- W4313331611 hasConcept C126322002 @default.
- W4313331611 hasConcept C126838900 @default.
- W4313331611 hasConcept C142724271 @default.
- W4313331611 hasConcept C154945302 @default.
- W4313331611 hasConcept C2775842073 @default.
- W4313331611 hasConcept C2778559731 @default.
- W4313331611 hasConcept C2780192828 @default.
- W4313331611 hasConcept C2781156865 @default.
- W4313331611 hasConcept C2989005 @default.
- W4313331611 hasConcept C41008148 @default.
- W4313331611 hasConcept C44249647 @default.
- W4313331611 hasConcept C58471807 @default.
- W4313331611 hasConcept C58489278 @default.
- W4313331611 hasConcept C71924100 @default.
- W4313331611 hasConceptScore W4313331611C121608353 @default.
- W4313331611 hasConceptScore W4313331611C126322002 @default.
- W4313331611 hasConceptScore W4313331611C126838900 @default.
- W4313331611 hasConceptScore W4313331611C142724271 @default.