Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313332148> ?p ?o ?g. }
- W4313332148 abstract "Spatial color algorithms (SCAs) are computer vision procedures widely used for image enhancement and human vision modeling. The main characteristic of SCA family is that they mimic the behavior of the human vision system (HVS), achieving in this way robustness and the capability to adjust their effect according to the image content. Here, we review 35 different, popular Retinex-inspired SCAs discussing and providing a set of measures for their evaluation in terms of image quality. To this purpose, we also introduce SCA-30, a real-world color image dataset made publicly available. The algorithms considered here include and spread from well-known Retinex implementations, Retinex variants, Milano–Retinex and related inspired enhancers, illumination/decomposition approaches, and deep learning-based techniques. Data and code used for the evaluation are made freely available to the community, to pursue further analysis and comparisons." @default.
- W4313332148 created "2023-01-06" @default.
- W4313332148 creator A5031580796 @default.
- W4313332148 creator A5037738148 @default.
- W4313332148 creator A5083095994 @default.
- W4313332148 creator A5087921260 @default.
- W4313332148 date "2022-12-23" @default.
- W4313332148 modified "2023-10-16" @default.
- W4313332148 title "Survey of methods and evaluation of Retinex-inspired image enhancers" @default.
- W4313332148 cites W1423701254 @default.
- W4313332148 cites W1620656115 @default.
- W4313332148 cites W1640745651 @default.
- W4313332148 cites W1771947260 @default.
- W4313332148 cites W1976039277 @default.
- W4313332148 cites W1982471090 @default.
- W4313332148 cites W1986462898 @default.
- W4313332148 cites W1990326425 @default.
- W4313332148 cites W1997742958 @default.
- W4313332148 cites W2002952093 @default.
- W4313332148 cites W2012146899 @default.
- W4313332148 cites W2014223894 @default.
- W4313332148 cites W2014329502 @default.
- W4313332148 cites W2016622085 @default.
- W4313332148 cites W2030368728 @default.
- W4313332148 cites W2041292705 @default.
- W4313332148 cites W2051406557 @default.
- W4313332148 cites W2060488209 @default.
- W4313332148 cites W2071114633 @default.
- W4313332148 cites W2076205488 @default.
- W4313332148 cites W2080700802 @default.
- W4313332148 cites W2088505316 @default.
- W4313332148 cites W2089162620 @default.
- W4313332148 cites W2089182596 @default.
- W4313332148 cites W2102166818 @default.
- W4313332148 cites W2106402996 @default.
- W4313332148 cites W2117228865 @default.
- W4313332148 cites W2117289053 @default.
- W4313332148 cites W2119020251 @default.
- W4313332148 cites W2121579674 @default.
- W4313332148 cites W2121900453 @default.
- W4313332148 cites W2132713759 @default.
- W4313332148 cites W2147421915 @default.
- W4313332148 cites W2150721269 @default.
- W4313332148 cites W2159871081 @default.
- W4313332148 cites W2168604797 @default.
- W4313332148 cites W2282238360 @default.
- W4313332148 cites W2289810822 @default.
- W4313332148 cites W2293168533 @default.
- W4313332148 cites W2322164475 @default.
- W4313332148 cites W2396105481 @default.
- W4313332148 cites W2412926690 @default.
- W4313332148 cites W2466707618 @default.
- W4313332148 cites W2468596194 @default.
- W4313332148 cites W2549843141 @default.
- W4313332148 cites W2562637781 @default.
- W4313332148 cites W2566376500 @default.
- W4313332148 cites W2569004391 @default.
- W4313332148 cites W2591691647 @default.
- W4313332148 cites W2593368283 @default.
- W4313332148 cites W2593907589 @default.
- W4313332148 cites W2599149335 @default.
- W4313332148 cites W2603011330 @default.
- W4313332148 cites W2603072276 @default.
- W4313332148 cites W2621499649 @default.
- W4313332148 cites W2734424990 @default.
- W4313332148 cites W2767356570 @default.
- W4313332148 cites W2779947488 @default.
- W4313332148 cites W2780108394 @default.
- W4313332148 cites W2791710889 @default.
- W4313332148 cites W2801541075 @default.
- W4313332148 cites W2805430926 @default.
- W4313332148 cites W2884110313 @default.
- W4313332148 cites W2898049188 @default.
- W4313332148 cites W2963121367 @default.
- W4313332148 cites W2963766909 @default.
- W4313332148 cites W2963866559 @default.
- W4313332148 cites W2965836860 @default.
- W4313332148 cites W2969359419 @default.
- W4313332148 cites W2971973662 @default.
- W4313332148 cites W2999122870 @default.
- W4313332148 cites W3000164227 @default.
- W4313332148 cites W3014827006 @default.
- W4313332148 cites W3098971031 @default.
- W4313332148 cites W3105273993 @default.
- W4313332148 cites W3110069174 @default.
- W4313332148 cites W3119888351 @default.
- W4313332148 cites W3127763814 @default.
- W4313332148 cites W3132778068 @default.
- W4313332148 cites W3135038612 @default.
- W4313332148 cites W3154123740 @default.
- W4313332148 cites W3174792937 @default.
- W4313332148 cites W3182529813 @default.
- W4313332148 cites W3195691196 @default.
- W4313332148 cites W4206384366 @default.
- W4313332148 cites W4226196897 @default.
- W4313332148 cites W4285266526 @default.
- W4313332148 cites W4288053791 @default.
- W4313332148 cites W43742843 @default.
- W4313332148 doi "https://doi.org/10.1117/1.jei.31.6.063055" @default.
- W4313332148 hasPublicationYear "2022" @default.