Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313332259> ?p ?o ?g. }
- W4313332259 endingPage "8" @default.
- W4313332259 startingPage "1" @default.
- W4313332259 abstract "Reservoir computing is a simplified recurrent neural network, which requires training only at the output layer and hence significantly reduces the training cost. Time-delay reservoir computing (TDRC) introduces a large number of virtual neurons based on a single physical neuron and a feedback loop, which is friendly for hardware implementations. This work proposes a scheme for implementing the deep TDRC architecture based on cascading injection-locked semiconductor lasers. In each layer, the reservoir consists of a quantum dot laser and an optical feedback loop. The output of each reservoir layer is fed into the subsequent one through the optical injection-locking technique. This all-optical approach (for reservoir layers) has the merit of high scalability without any depth limitation. Theoretical analysis shows that the deep TDRC improves the performance on multiple benchmark tasks, including the memory capacity, the prediction of chaos, the nonlinear channel equalization, and the recognition of spoken digits." @default.
- W4313332259 created "2023-01-06" @default.
- W4313332259 creator A5011349623 @default.
- W4313332259 creator A5015970030 @default.
- W4313332259 creator A5045222641 @default.
- W4313332259 creator A5047945003 @default.
- W4313332259 creator A5054316795 @default.
- W4313332259 creator A5080677701 @default.
- W4313332259 date "2023-11-01" @default.
- W4313332259 modified "2023-09-25" @default.
- W4313332259 title "Deep Time-Delay Reservoir Computing With Cascading Injection-Locked Lasers" @default.
- W4313332259 cites W1480485976 @default.
- W4313332259 cites W1965702053 @default.
- W4313332259 cites W1977664984 @default.
- W4313332259 cites W2022248835 @default.
- W4313332259 cites W2029939668 @default.
- W4313332259 cites W2065625684 @default.
- W4313332259 cites W2066545822 @default.
- W4313332259 cites W2079329690 @default.
- W4313332259 cites W2085681651 @default.
- W4313332259 cites W2117338400 @default.
- W4313332259 cites W2311297018 @default.
- W4313332259 cites W2509987864 @default.
- W4313332259 cites W2584998015 @default.
- W4313332259 cites W2608997467 @default.
- W4313332259 cites W2745578724 @default.
- W4313332259 cites W2789580836 @default.
- W4313332259 cites W2885420314 @default.
- W4313332259 cites W2887258823 @default.
- W4313332259 cites W2898551707 @default.
- W4313332259 cites W2912529252 @default.
- W4313332259 cites W2941866910 @default.
- W4313332259 cites W2952070801 @default.
- W4313332259 cites W2961524461 @default.
- W4313332259 cites W2962726230 @default.
- W4313332259 cites W2963767846 @default.
- W4313332259 cites W2979589704 @default.
- W4313332259 cites W2996678389 @default.
- W4313332259 cites W2998821156 @default.
- W4313332259 cites W3049614910 @default.
- W4313332259 cites W3087497040 @default.
- W4313332259 cites W3089150267 @default.
- W4313332259 cites W3101465594 @default.
- W4313332259 cites W3126304295 @default.
- W4313332259 cites W3214007446 @default.
- W4313332259 cites W4210524437 @default.
- W4313332259 cites W4210694436 @default.
- W4313332259 cites W4220721854 @default.
- W4313332259 cites W4246016472 @default.
- W4313332259 cites W4292764387 @default.
- W4313332259 cites W4300089661 @default.
- W4313332259 doi "https://doi.org/10.1109/jstqe.2022.3228234" @default.
- W4313332259 hasPublicationYear "2023" @default.
- W4313332259 type Work @default.
- W4313332259 citedByCount "5" @default.
- W4313332259 countsByYear W43133322592023 @default.
- W4313332259 crossrefType "journal-article" @default.
- W4313332259 hasAuthorship W4313332259A5011349623 @default.
- W4313332259 hasAuthorship W4313332259A5015970030 @default.
- W4313332259 hasAuthorship W4313332259A5045222641 @default.
- W4313332259 hasAuthorship W4313332259A5047945003 @default.
- W4313332259 hasAuthorship W4313332259A5054316795 @default.
- W4313332259 hasAuthorship W4313332259A5080677701 @default.
- W4313332259 hasConcept C113775141 @default.
- W4313332259 hasConcept C120665830 @default.
- W4313332259 hasConcept C121332964 @default.
- W4313332259 hasConcept C127413603 @default.
- W4313332259 hasConcept C13280743 @default.
- W4313332259 hasConcept C135796866 @default.
- W4313332259 hasConcept C147168706 @default.
- W4313332259 hasConcept C154945302 @default.
- W4313332259 hasConcept C185798385 @default.
- W4313332259 hasConcept C19247436 @default.
- W4313332259 hasConcept C205649164 @default.
- W4313332259 hasConcept C24326235 @default.
- W4313332259 hasConcept C41008148 @default.
- W4313332259 hasConcept C48044578 @default.
- W4313332259 hasConcept C50644808 @default.
- W4313332259 hasConcept C520434653 @default.
- W4313332259 hasConcept C555944384 @default.
- W4313332259 hasConcept C76155785 @default.
- W4313332259 hasConcept C77088390 @default.
- W4313332259 hasConceptScore W4313332259C113775141 @default.
- W4313332259 hasConceptScore W4313332259C120665830 @default.
- W4313332259 hasConceptScore W4313332259C121332964 @default.
- W4313332259 hasConceptScore W4313332259C127413603 @default.
- W4313332259 hasConceptScore W4313332259C13280743 @default.
- W4313332259 hasConceptScore W4313332259C135796866 @default.
- W4313332259 hasConceptScore W4313332259C147168706 @default.
- W4313332259 hasConceptScore W4313332259C154945302 @default.
- W4313332259 hasConceptScore W4313332259C185798385 @default.
- W4313332259 hasConceptScore W4313332259C19247436 @default.
- W4313332259 hasConceptScore W4313332259C205649164 @default.
- W4313332259 hasConceptScore W4313332259C24326235 @default.
- W4313332259 hasConceptScore W4313332259C41008148 @default.
- W4313332259 hasConceptScore W4313332259C48044578 @default.
- W4313332259 hasConceptScore W4313332259C50644808 @default.
- W4313332259 hasConceptScore W4313332259C520434653 @default.