Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313332390> ?p ?o ?g. }
- W4313332390 abstract "Abstract Clinical trials of new treatments in different progressive diseases use power analysis to determine the sample size needed for a trial to obtain a statistically significant estimate for an anticipated treatment effect. In trials with parallel designs, the standard power analysis approach is based on a two-sample t-test. For example, the standard t-test approach was used in determining the sample size for the Phase 3 trials of aducanumab, the first drug approved by the United States Food and Drug Administration (FDA) to potentially slow cognitive decline in early-stage Alzheimer’s disease. However, t-tests contain normality assumptions, and t-test-based power analyses do not implicitly factor in the uncertainty about anticipated treatment effects that arises due to inter-subject heterogeneity in disease progression. These limitations may lead to recommended sample sizes that are too small, potentially making a trial blind to a treatment effect that is truly present if the cohort’s endpoints are not normally distributed and/or the anticipated treatment effect is overestimated. To address these issues, we present a novel power analysis method that (1) simulates clinical trials in a progressive disease using real-world data, (2) accounts for inter-subject heterogeneity in disease progression, and (3) does not depend on normality assumptions. As a showcase example, we used our method to calculate power for a range of sample sizes and treatment effects in simulated trials similar to the Phase 3 aducanumab trials EMERGE and ENGAGE. As expected, our results show that power increases with number of subjects and treatment effect (here defined as the cohort-level percent reduction in the rate of cognitive decline in treated subjects vs. controls). However, inclusion of realistic inter-subject heterogeneity in cognitive decline trajectories leads to increased sample size recommendations compared to a standard t-test power analysis. These results suggest that the sample sizes recommended by the t-test power analyses in the EMERGE and ENGAGE Statistical Analysis Plans were possibly too small to ensure a high probability of detecting the anticipated treatment effect. Insufficient sample sizes could partly explain the statistically significant effect of aducanumab being detected only in EMERGE. We also used our method to analyze power in simulated trials similar the Phase 3 lecanemab trial Clarity AD. Our results suggest that Clarity AD was adequately powered, and that power may be influenced by a trial’s number of analysis visits and the characteristics of subgroups within a cohort. By using our simulation-based power analysis approach, clinical trials of treatments in Alzheimer’s disease and potentially in other progressive diseases could obtain sample size recommendations that account for heterogeneity in disease progression and uncertainty in anticipated treatment effects. Our approach avoids the limitations of t-tests and thus could help ensure that clinical trials are more adequately powered to detect the treatment effects they seek to measure." @default.
- W4313332390 created "2023-01-06" @default.
- W4313332390 creator A5008598861 @default.
- W4313332390 creator A5042241854 @default.
- W4313332390 creator A5051587217 @default.
- W4313332390 creator A5061155266 @default.
- W4313332390 creator A5086162911 @default.
- W4313332390 creator A5088503502 @default.
- W4313332390 date "2022-12-27" @default.
- W4313332390 modified "2023-09-30" @default.
- W4313332390 title "Simulation-based power analysis could improve the design of clinical trials in Alzheimer’s disease" @default.
- W4313332390 cites W1561315863 @default.
- W4313332390 cites W1587682423 @default.
- W4313332390 cites W1847168837 @default.
- W4313332390 cites W1951724000 @default.
- W4313332390 cites W1981457167 @default.
- W4313332390 cites W1984737558 @default.
- W4313332390 cites W1984903870 @default.
- W4313332390 cites W2019655958 @default.
- W4313332390 cites W2044081264 @default.
- W4313332390 cites W2070054259 @default.
- W4313332390 cites W2095475275 @default.
- W4313332390 cites W2096742242 @default.
- W4313332390 cites W2108267889 @default.
- W4313332390 cites W2122264016 @default.
- W4313332390 cites W2130240223 @default.
- W4313332390 cites W2132842417 @default.
- W4313332390 cites W2137070227 @default.
- W4313332390 cites W2146702846 @default.
- W4313332390 cites W2152163581 @default.
- W4313332390 cites W2168283959 @default.
- W4313332390 cites W2200917453 @default.
- W4313332390 cites W2213054775 @default.
- W4313332390 cites W2782660935 @default.
- W4313332390 cites W2797937217 @default.
- W4313332390 cites W2809750665 @default.
- W4313332390 cites W2885133488 @default.
- W4313332390 cites W2886266252 @default.
- W4313332390 cites W2889611173 @default.
- W4313332390 cites W2895486342 @default.
- W4313332390 cites W2912542398 @default.
- W4313332390 cites W2952757700 @default.
- W4313332390 cites W2953778338 @default.
- W4313332390 cites W2965878453 @default.
- W4313332390 cites W2969724484 @default.
- W4313332390 cites W3042851038 @default.
- W4313332390 cites W3048824820 @default.
- W4313332390 cites W3106889297 @default.
- W4313332390 cites W3157186248 @default.
- W4313332390 cites W3162797634 @default.
- W4313332390 cites W3172344409 @default.
- W4313332390 cites W3185184038 @default.
- W4313332390 cites W3204314450 @default.
- W4313332390 cites W3204535270 @default.
- W4313332390 cites W4200376594 @default.
- W4313332390 cites W4200556729 @default.
- W4313332390 cites W4205623774 @default.
- W4313332390 cites W4210987525 @default.
- W4313332390 cites W4225741213 @default.
- W4313332390 cites W4281257598 @default.
- W4313332390 cites W4310461604 @default.
- W4313332390 doi "https://doi.org/10.1101/2022.12.24.22283807" @default.
- W4313332390 hasPublicationYear "2022" @default.
- W4313332390 type Work @default.
- W4313332390 citedByCount "0" @default.
- W4313332390 crossrefType "posted-content" @default.
- W4313332390 hasAuthorship W4313332390A5008598861 @default.
- W4313332390 hasAuthorship W4313332390A5042241854 @default.
- W4313332390 hasAuthorship W4313332390A5051587217 @default.
- W4313332390 hasAuthorship W4313332390A5061155266 @default.
- W4313332390 hasAuthorship W4313332390A5086162911 @default.
- W4313332390 hasAuthorship W4313332390A5088503502 @default.
- W4313332390 hasBestOaLocation W43133323901 @default.
- W4313332390 hasConcept C105795698 @default.
- W4313332390 hasConcept C126322002 @default.
- W4313332390 hasConcept C129848803 @default.
- W4313332390 hasConcept C148482608 @default.
- W4313332390 hasConcept C149782125 @default.
- W4313332390 hasConcept C178489894 @default.
- W4313332390 hasConcept C185592680 @default.
- W4313332390 hasConcept C198531522 @default.
- W4313332390 hasConcept C2776157432 @default.
- W4313332390 hasConcept C2779134260 @default.
- W4313332390 hasConcept C33923547 @default.
- W4313332390 hasConcept C38652104 @default.
- W4313332390 hasConcept C41008148 @default.
- W4313332390 hasConcept C43617362 @default.
- W4313332390 hasConcept C535046627 @default.
- W4313332390 hasConcept C71743495 @default.
- W4313332390 hasConcept C71924100 @default.
- W4313332390 hasConcept C96608239 @default.
- W4313332390 hasConceptScore W4313332390C105795698 @default.
- W4313332390 hasConceptScore W4313332390C126322002 @default.
- W4313332390 hasConceptScore W4313332390C129848803 @default.
- W4313332390 hasConceptScore W4313332390C148482608 @default.
- W4313332390 hasConceptScore W4313332390C149782125 @default.
- W4313332390 hasConceptScore W4313332390C178489894 @default.
- W4313332390 hasConceptScore W4313332390C185592680 @default.
- W4313332390 hasConceptScore W4313332390C198531522 @default.
- W4313332390 hasConceptScore W4313332390C2776157432 @default.