Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313332413> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4313332413 endingPage "1235" @default.
- W4313332413 startingPage "1224" @default.
- W4313332413 abstract "Deep learning image segmentation has become an important field of interest in recent years, especially when it comes to medical images. Segmentation of medical image modalities such as magnetic resonance imaging (MRI) and computed tomography (CT) can benefit diagnosis accuracy, speed up diagnosis process, and decrease workload. The most famously used deep learning models in the medical image segmentation are the UNET-based models, which have been repeatedly proven to provide a high percentage of accuracy in medical image segmentation. But, most of the available datasets contain a single modality and thus are not big enough to train complex architectures. Lately, it has been shown that using multiple modalities with multiple streams architectures can provide higher accuracy more than single modality with a single stream architecture. In this paper, the benefits of dual-stream and triple-stream architectures are demonstrated when processing multiple modalities. This work shows that dual stream can achieve dice of 0.97 on CT images and 0.89 on MRI images, while in triple stream architectures can achieve dice of 0.97 on CT images and 0.96 on MRI images. To the best of our knowledge, these are the best results to date." @default.
- W4313332413 created "2023-01-06" @default.
- W4313332413 creator A5015947297 @default.
- W4313332413 creator A5041929461 @default.
- W4313332413 date "2022-12-28" @default.
- W4313332413 modified "2023-09-30" @default.
- W4313332413 title "Dual‐ and triple‐stream RESUNET/UNET architectures for multi‐modal liver segmentation" @default.
- W4313332413 cites W1903029394 @default.
- W4313332413 cites W2253429366 @default.
- W4313332413 cites W2525606708 @default.
- W4313332413 cites W2802798675 @default.
- W4313332413 cites W2914493539 @default.
- W4313332413 cites W2959687571 @default.
- W4313332413 cites W3007268491 @default.
- W4313332413 cites W3105282616 @default.
- W4313332413 cites W3112139896 @default.
- W4313332413 cites W3176440633 @default.
- W4313332413 cites W3203072898 @default.
- W4313332413 cites W3208720418 @default.
- W4313332413 doi "https://doi.org/10.1049/ipr2.12708" @default.
- W4313332413 hasPublicationYear "2022" @default.
- W4313332413 type Work @default.
- W4313332413 citedByCount "0" @default.
- W4313332413 crossrefType "journal-article" @default.
- W4313332413 hasAuthorship W4313332413A5015947297 @default.
- W4313332413 hasAuthorship W4313332413A5041929461 @default.
- W4313332413 hasBestOaLocation W43133324131 @default.
- W4313332413 hasConcept C108583219 @default.
- W4313332413 hasConcept C111919701 @default.
- W4313332413 hasConcept C124504099 @default.
- W4313332413 hasConcept C126838900 @default.
- W4313332413 hasConcept C143409427 @default.
- W4313332413 hasConcept C144024400 @default.
- W4313332413 hasConcept C153180895 @default.
- W4313332413 hasConcept C154945302 @default.
- W4313332413 hasConcept C22029948 @default.
- W4313332413 hasConcept C2524010 @default.
- W4313332413 hasConcept C2778476105 @default.
- W4313332413 hasConcept C2779903281 @default.
- W4313332413 hasConcept C2780226545 @default.
- W4313332413 hasConcept C31601959 @default.
- W4313332413 hasConcept C31972630 @default.
- W4313332413 hasConcept C33923547 @default.
- W4313332413 hasConcept C36289849 @default.
- W4313332413 hasConcept C41008148 @default.
- W4313332413 hasConcept C71924100 @default.
- W4313332413 hasConcept C89600930 @default.
- W4313332413 hasConceptScore W4313332413C108583219 @default.
- W4313332413 hasConceptScore W4313332413C111919701 @default.
- W4313332413 hasConceptScore W4313332413C124504099 @default.
- W4313332413 hasConceptScore W4313332413C126838900 @default.
- W4313332413 hasConceptScore W4313332413C143409427 @default.
- W4313332413 hasConceptScore W4313332413C144024400 @default.
- W4313332413 hasConceptScore W4313332413C153180895 @default.
- W4313332413 hasConceptScore W4313332413C154945302 @default.
- W4313332413 hasConceptScore W4313332413C22029948 @default.
- W4313332413 hasConceptScore W4313332413C2524010 @default.
- W4313332413 hasConceptScore W4313332413C2778476105 @default.
- W4313332413 hasConceptScore W4313332413C2779903281 @default.
- W4313332413 hasConceptScore W4313332413C2780226545 @default.
- W4313332413 hasConceptScore W4313332413C31601959 @default.
- W4313332413 hasConceptScore W4313332413C31972630 @default.
- W4313332413 hasConceptScore W4313332413C33923547 @default.
- W4313332413 hasConceptScore W4313332413C36289849 @default.
- W4313332413 hasConceptScore W4313332413C41008148 @default.
- W4313332413 hasConceptScore W4313332413C71924100 @default.
- W4313332413 hasConceptScore W4313332413C89600930 @default.
- W4313332413 hasIssue "4" @default.
- W4313332413 hasLocation W43133324131 @default.
- W4313332413 hasOpenAccess W4313332413 @default.
- W4313332413 hasPrimaryLocation W43133324131 @default.
- W4313332413 hasRelatedWork W1669643531 @default.
- W4313332413 hasRelatedWork W2005437358 @default.
- W4313332413 hasRelatedWork W2008656436 @default.
- W4313332413 hasRelatedWork W2023558673 @default.
- W4313332413 hasRelatedWork W2110230079 @default.
- W4313332413 hasRelatedWork W2134924024 @default.
- W4313332413 hasRelatedWork W2517104666 @default.
- W4313332413 hasRelatedWork W2790662084 @default.
- W4313332413 hasRelatedWork W4285392182 @default.
- W4313332413 hasRelatedWork W4285827401 @default.
- W4313332413 hasVolume "17" @default.
- W4313332413 isParatext "false" @default.
- W4313332413 isRetracted "false" @default.
- W4313332413 workType "article" @default.