Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313332597> ?p ?o ?g. }
- W4313332597 abstract "This paper demonstrates the ability of the neural network trained on frequency-sweeping signals with different amplitudes to reconstruct the flame nonlinear response. The neural network architecture consists of a decreasing sequence increasing dimension model and a sequence model; the latter one uses the long short-term memory (LSTM) and encoder of Transformer. Results show that the neural network trained using the proposed sweeping method with limited training data can reconstruct realistic signals over the envisaged range of frequencies and amplitudes. The nonlinear flame responses obtained by the neural network are further embedded into the closed-loop thermoacoustic feedback to quantify the reconstruction performance of sequence signals. It is demonstrated that the neural network can accurately capture the evolution of the limit cycle. This paper has also compared the effect of different types and sizes of datasets on trained neural networks model; the results show that models trained with our proposed datasets perform better. For small-size datasets, LSTM performs significantly better than the encoder of Transformer. The encoder of Transformer is more suitable for large-size datasets." @default.
- W4313332597 created "2023-01-06" @default.
- W4313332597 creator A5011856186 @default.
- W4313332597 creator A5030997691 @default.
- W4313332597 creator A5041099682 @default.
- W4313332597 creator A5042838912 @default.
- W4313332597 date "2023-01-01" @default.
- W4313332597 modified "2023-09-26" @default.
- W4313332597 title "Reconstruction of the flame nonlinear response using deep learning algorithms" @default.
- W4313332597 cites W1979370207 @default.
- W4313332597 cites W1979932191 @default.
- W4313332597 cites W1981299582 @default.
- W4313332597 cites W1992692310 @default.
- W4313332597 cites W1995940402 @default.
- W4313332597 cites W2044006891 @default.
- W4313332597 cites W2046933031 @default.
- W4313332597 cites W2049881303 @default.
- W4313332597 cites W2055576761 @default.
- W4313332597 cites W2064675550 @default.
- W4313332597 cites W2069143585 @default.
- W4313332597 cites W2110485445 @default.
- W4313332597 cites W2112796928 @default.
- W4313332597 cites W2158177757 @default.
- W4313332597 cites W2159340836 @default.
- W4313332597 cites W2286276721 @default.
- W4313332597 cites W2462606330 @default.
- W4313332597 cites W2469562891 @default.
- W4313332597 cites W2597341999 @default.
- W4313332597 cites W2611619375 @default.
- W4313332597 cites W2618530766 @default.
- W4313332597 cites W2793750227 @default.
- W4313332597 cites W2896827527 @default.
- W4313332597 cites W3011574394 @default.
- W4313332597 cites W3024761859 @default.
- W4313332597 cites W3032842627 @default.
- W4313332597 cites W3042067519 @default.
- W4313332597 cites W3049482359 @default.
- W4313332597 cites W3092361041 @default.
- W4313332597 cites W3100321043 @default.
- W4313332597 cites W3118871303 @default.
- W4313332597 cites W3131956106 @default.
- W4313332597 cites W3132455321 @default.
- W4313332597 cites W3171229070 @default.
- W4313332597 cites W3199923779 @default.
- W4313332597 cites W3200034574 @default.
- W4313332597 cites W4283791586 @default.
- W4313332597 doi "https://doi.org/10.1063/5.0131928" @default.
- W4313332597 hasPublicationYear "2023" @default.
- W4313332597 type Work @default.
- W4313332597 citedByCount "1" @default.
- W4313332597 countsByYear W43133325972023 @default.
- W4313332597 crossrefType "journal-article" @default.
- W4313332597 hasAuthorship W4313332597A5011856186 @default.
- W4313332597 hasAuthorship W4313332597A5030997691 @default.
- W4313332597 hasAuthorship W4313332597A5041099682 @default.
- W4313332597 hasAuthorship W4313332597A5042838912 @default.
- W4313332597 hasConcept C101738243 @default.
- W4313332597 hasConcept C111919701 @default.
- W4313332597 hasConcept C11413529 @default.
- W4313332597 hasConcept C118505674 @default.
- W4313332597 hasConcept C121332964 @default.
- W4313332597 hasConcept C153180895 @default.
- W4313332597 hasConcept C154945302 @default.
- W4313332597 hasConcept C158622935 @default.
- W4313332597 hasConcept C165801399 @default.
- W4313332597 hasConcept C180205008 @default.
- W4313332597 hasConcept C41008148 @default.
- W4313332597 hasConcept C50644808 @default.
- W4313332597 hasConcept C62520636 @default.
- W4313332597 hasConcept C66322947 @default.
- W4313332597 hasConceptScore W4313332597C101738243 @default.
- W4313332597 hasConceptScore W4313332597C111919701 @default.
- W4313332597 hasConceptScore W4313332597C11413529 @default.
- W4313332597 hasConceptScore W4313332597C118505674 @default.
- W4313332597 hasConceptScore W4313332597C121332964 @default.
- W4313332597 hasConceptScore W4313332597C153180895 @default.
- W4313332597 hasConceptScore W4313332597C154945302 @default.
- W4313332597 hasConceptScore W4313332597C158622935 @default.
- W4313332597 hasConceptScore W4313332597C165801399 @default.
- W4313332597 hasConceptScore W4313332597C180205008 @default.
- W4313332597 hasConceptScore W4313332597C41008148 @default.
- W4313332597 hasConceptScore W4313332597C50644808 @default.
- W4313332597 hasConceptScore W4313332597C62520636 @default.
- W4313332597 hasConceptScore W4313332597C66322947 @default.
- W4313332597 hasFunder F4320321001 @default.
- W4313332597 hasIssue "1" @default.
- W4313332597 hasLocation W43133325971 @default.
- W4313332597 hasOpenAccess W4313332597 @default.
- W4313332597 hasPrimaryLocation W43133325971 @default.
- W4313332597 hasRelatedWork W2292254049 @default.
- W4313332597 hasRelatedWork W2592385986 @default.
- W4313332597 hasRelatedWork W2772780115 @default.
- W4313332597 hasRelatedWork W2897995864 @default.
- W4313332597 hasRelatedWork W2998168123 @default.
- W4313332597 hasRelatedWork W3099179464 @default.
- W4313332597 hasRelatedWork W4214881770 @default.
- W4313332597 hasRelatedWork W4281924768 @default.
- W4313332597 hasRelatedWork W4287995534 @default.
- W4313332597 hasRelatedWork W4309838615 @default.
- W4313332597 hasVolume "35" @default.