Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313332918> ?p ?o ?g. }
- W4313332918 endingPage "982" @default.
- W4313332918 startingPage "968" @default.
- W4313332918 abstract "The stability demand of polymeric membrane separation systems used in harsh environments, including high temperature, high pressure, extreme acid, and high salinity, makes the role of polyarylate (PAR) porous membranes more and more crucial. Herein, the PAR ultrafiltration membrane is fabricated from the nonsolvent-induced phase separation (NIPS) method in a simple, high-efficiency way. In order to study the evolution mechanism of cross-sectional pore morphologies during the NIPS process, different coagulation conditions, including the PAR concentration in casting solution, the coagulation temperature, and the addition of different hydrophilic additives (PEG400, PEG4000, PEG20000, and PVP), are applied. Next, the morphologies and membrane performances of various PAR membranes are analyzed by scanning electron microscopy, porosity measurement, N2 isotherm adsorption–desorption measurement, water flux measurement, bovine serum albumin (BSA) separation measurement, and mechanical test. Based on these measurements, the formation rule of different pore morphologies in the cross section of PAR membrane was clarified, and the effects of different cross-sectional morphologies on the permeability, filterability, and mechanical properties of the resultant membranes are pointed out. The viscosity effect from a higher PAR concentration and a higher hydrophilic additive concentration in a casting solution can delay the formation of the outer layer and limit the nucleation growth process of the nonsolvent, then allowing the formation of near-surface sponge-like pores and fewer inner macropores. Moreover, not only the increase of the bath temperature but also the strengthening hydrophilicity of the casting solution can accelerate the double-diffusion rate and the growth process of nuclei, thereby promoting the formation of near-surface finger-like pores and more inner macropores. Combined with the enhancement of membrane hydrophilicity, these pores as channels can accelerate the passage of water through the PAR membrane. For the PAR16–PVP10-30 membrane, not only a 120 L·m–2·h–1·bar–1 of water flux but also a close to 100% of BSA rejection ratio is obtained. Although the formation of near-surface sponge-like pores and fewer inner macropores deteriorate the membrane’s permeability, the high BSA rejection ratio and the improved mechanical property can be maintained. Finally, the optimization component of the casting solution for fabricating a PAR ultrafiltration membrane with enough permeability, high selectivity, and suitable mechanical property adds 10 wt % PVP in the solution of 16 wt % PAR, ensuring the solid hydrophilic effect and moderate viscosity effect." @default.
- W4313332918 created "2023-01-06" @default.
- W4313332918 creator A5000562139 @default.
- W4313332918 creator A5015155233 @default.
- W4313332918 creator A5023317657 @default.
- W4313332918 creator A5054171444 @default.
- W4313332918 creator A5066960621 @default.
- W4313332918 creator A5071278984 @default.
- W4313332918 date "2022-12-29" @default.
- W4313332918 modified "2023-09-30" @default.
- W4313332918 title "Fabrication of Polyarylate-Based Porous Membranes from Nonsolvent-Induced Phase Separation Process and Related Permeability and Filterability Characterizations" @default.
- W4313332918 cites W1504220970 @default.
- W4313332918 cites W1990476520 @default.
- W4313332918 cites W2003689294 @default.
- W4313332918 cites W2029104443 @default.
- W4313332918 cites W2046357949 @default.
- W4313332918 cites W2067123082 @default.
- W4313332918 cites W2101886548 @default.
- W4313332918 cites W2299005865 @default.
- W4313332918 cites W2328565091 @default.
- W4313332918 cites W2346393626 @default.
- W4313332918 cites W2346717574 @default.
- W4313332918 cites W2575947989 @default.
- W4313332918 cites W2594158531 @default.
- W4313332918 cites W2618739394 @default.
- W4313332918 cites W2625153997 @default.
- W4313332918 cites W2762601190 @default.
- W4313332918 cites W2793344462 @default.
- W4313332918 cites W2803104695 @default.
- W4313332918 cites W2891338649 @default.
- W4313332918 cites W2903580076 @default.
- W4313332918 cites W2909355782 @default.
- W4313332918 cites W2910264874 @default.
- W4313332918 cites W2946628603 @default.
- W4313332918 cites W2955512825 @default.
- W4313332918 cites W2965372332 @default.
- W4313332918 cites W2969694122 @default.
- W4313332918 cites W2972795436 @default.
- W4313332918 cites W2982987856 @default.
- W4313332918 cites W2989241848 @default.
- W4313332918 cites W2997332132 @default.
- W4313332918 cites W2998219063 @default.
- W4313332918 cites W3026049299 @default.
- W4313332918 cites W3029223512 @default.
- W4313332918 cites W3034053638 @default.
- W4313332918 cites W3038516871 @default.
- W4313332918 cites W3042055556 @default.
- W4313332918 cites W3042365764 @default.
- W4313332918 cites W3045279935 @default.
- W4313332918 cites W3081691553 @default.
- W4313332918 cites W3083900215 @default.
- W4313332918 cites W3087248314 @default.
- W4313332918 cites W3095882867 @default.
- W4313332918 cites W3108843678 @default.
- W4313332918 cites W3132795588 @default.
- W4313332918 cites W3137900078 @default.
- W4313332918 cites W3186014583 @default.
- W4313332918 cites W323339220 @default.
- W4313332918 cites W4220668709 @default.
- W4313332918 cites W4220915679 @default.
- W4313332918 cites W4283332724 @default.
- W4313332918 cites W4283361085 @default.
- W4313332918 cites W4286449400 @default.
- W4313332918 doi "https://doi.org/10.1021/acsapm.2c01896" @default.
- W4313332918 hasPublicationYear "2022" @default.
- W4313332918 type Work @default.
- W4313332918 citedByCount "2" @default.
- W4313332918 countsByYear W43133329182023 @default.
- W4313332918 crossrefType "journal-article" @default.
- W4313332918 hasAuthorship W4313332918A5000562139 @default.
- W4313332918 hasAuthorship W4313332918A5015155233 @default.
- W4313332918 hasAuthorship W4313332918A5023317657 @default.
- W4313332918 hasAuthorship W4313332918A5054171444 @default.
- W4313332918 hasAuthorship W4313332918A5066960621 @default.
- W4313332918 hasAuthorship W4313332918A5071278984 @default.
- W4313332918 hasConcept C127413603 @default.
- W4313332918 hasConcept C150394285 @default.
- W4313332918 hasConcept C159985019 @default.
- W4313332918 hasConcept C16635281 @default.
- W4313332918 hasConcept C171431902 @default.
- W4313332918 hasConcept C178790620 @default.
- W4313332918 hasConcept C185592680 @default.
- W4313332918 hasConcept C192562407 @default.
- W4313332918 hasConcept C41625074 @default.
- W4313332918 hasConcept C42360764 @default.
- W4313332918 hasConcept C43617362 @default.
- W4313332918 hasConcept C50670333 @default.
- W4313332918 hasConcept C50817676 @default.
- W4313332918 hasConcept C55493867 @default.
- W4313332918 hasConcept C61048295 @default.
- W4313332918 hasConcept C6648577 @default.
- W4313332918 hasConceptScore W4313332918C127413603 @default.
- W4313332918 hasConceptScore W4313332918C150394285 @default.
- W4313332918 hasConceptScore W4313332918C159985019 @default.
- W4313332918 hasConceptScore W4313332918C16635281 @default.
- W4313332918 hasConceptScore W4313332918C171431902 @default.
- W4313332918 hasConceptScore W4313332918C178790620 @default.
- W4313332918 hasConceptScore W4313332918C185592680 @default.