Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313333071> ?p ?o ?g. }
- W4313333071 endingPage "25" @default.
- W4313333071 startingPage "1" @default.
- W4313333071 abstract "Due to heterogeneous sound propagation conditions and fluctuating ambient noises, conventional handcrafted feature extraction methods represent poor results and high complexity in underwater sonar wave recognition tasks. In order to address these shortcomings, this paper proposes a hybrid metaheuristic deep learning-based approach. However, model depth may vary under different underwater ocean conditions. The deeper the model, the greater the number of hyperparameters, challenging the search space. It is crucial to have an efficient algorithm that can obtain an accurate model in a reasonable time. Therefore, this paper proposes the Variable-Length Habitat Biogeography-Based Optimizer (VLHBBO) to tune the hyperparameters of a deep conventional neural network. Given that there is no appropriate dataset for training the proposed model, experimental underwater scattering measurement is conducted on several target and non-target objects of the same size in the east of the Persian Gulf and the west of the Oman Sea. Furthermore, this study uses the benchmark datasets obtained from the New Array Technology III program as test datasets. The performance of the proposed model is compared to other underwater target classifiers in terms of eight metrics. The classification results indicate that the proposed VLBBO-DCNN classifier can effectively classify underwater sonar waves into relevant categories." @default.
- W4313333071 created "2023-01-06" @default.
- W4313333071 creator A5012491705 @default.
- W4313333071 creator A5016126269 @default.
- W4313333071 creator A5066661344 @default.
- W4313333071 date "2022-12-29" @default.
- W4313333071 modified "2023-10-02" @default.
- W4313333071 title "Complex active sonar targets recognition using variable length deep convolutional neural network evolved by biogeography-based optimizer" @default.
- W4313333071 cites W1976990135 @default.
- W4313333071 cites W2006328500 @default.
- W4313333071 cites W2031030862 @default.
- W4313333071 cites W2069764064 @default.
- W4313333071 cites W2083536936 @default.
- W4313333071 cites W2101017263 @default.
- W4313333071 cites W2112446953 @default.
- W4313333071 cites W2118884921 @default.
- W4313333071 cites W2168081761 @default.
- W4313333071 cites W2186155590 @default.
- W4313333071 cites W2617638177 @default.
- W4313333071 cites W2622826443 @default.
- W4313333071 cites W2800167091 @default.
- W4313333071 cites W2801640587 @default.
- W4313333071 cites W2807821935 @default.
- W4313333071 cites W2811045405 @default.
- W4313333071 cites W2926548420 @default.
- W4313333071 cites W2938886060 @default.
- W4313333071 cites W2939526242 @default.
- W4313333071 cites W2944156532 @default.
- W4313333071 cites W2944315498 @default.
- W4313333071 cites W2963946985 @default.
- W4313333071 cites W2987122830 @default.
- W4313333071 cites W3003550074 @default.
- W4313333071 cites W3007907254 @default.
- W4313333071 cites W3046206496 @default.
- W4313333071 cites W3081662690 @default.
- W4313333071 cites W3094787782 @default.
- W4313333071 cites W3097410963 @default.
- W4313333071 cites W3105562661 @default.
- W4313333071 cites W3113162495 @default.
- W4313333071 cites W3114297766 @default.
- W4313333071 cites W3119051141 @default.
- W4313333071 cites W3131865966 @default.
- W4313333071 cites W3134815184 @default.
- W4313333071 cites W3139484821 @default.
- W4313333071 cites W3160920078 @default.
- W4313333071 cites W3166101415 @default.
- W4313333071 cites W3185014437 @default.
- W4313333071 cites W3193751801 @default.
- W4313333071 cites W3194479518 @default.
- W4313333071 cites W3199010270 @default.
- W4313333071 cites W3201540601 @default.
- W4313333071 cites W3204766889 @default.
- W4313333071 cites W3207849664 @default.
- W4313333071 cites W3210909233 @default.
- W4313333071 cites W3212797097 @default.
- W4313333071 cites W3213300473 @default.
- W4313333071 cites W3214181264 @default.
- W4313333071 cites W4205504823 @default.
- W4313333071 cites W4205813315 @default.
- W4313333071 cites W4205838788 @default.
- W4313333071 cites W4207064948 @default.
- W4313333071 cites W4210401277 @default.
- W4313333071 cites W4213279713 @default.
- W4313333071 cites W4220880546 @default.
- W4313333071 cites W4220979463 @default.
- W4313333071 cites W4224290506 @default.
- W4313333071 cites W4226208947 @default.
- W4313333071 cites W4226300981 @default.
- W4313333071 cites W4280599270 @default.
- W4313333071 cites W4280600250 @default.
- W4313333071 cites W4283797458 @default.
- W4313333071 cites W4284887415 @default.
- W4313333071 cites W4285596757 @default.
- W4313333071 cites W4286423575 @default.
- W4313333071 doi "https://doi.org/10.1080/17455030.2022.2155319" @default.
- W4313333071 hasPublicationYear "2022" @default.
- W4313333071 type Work @default.
- W4313333071 citedByCount "1" @default.
- W4313333071 countsByYear W43133330712023 @default.
- W4313333071 crossrefType "journal-article" @default.
- W4313333071 hasAuthorship W4313333071A5012491705 @default.
- W4313333071 hasAuthorship W4313333071A5016126269 @default.
- W4313333071 hasAuthorship W4313333071A5066661344 @default.
- W4313333071 hasConcept C108583219 @default.
- W4313333071 hasConcept C111368507 @default.
- W4313333071 hasConcept C119857082 @default.
- W4313333071 hasConcept C127313418 @default.
- W4313333071 hasConcept C13280743 @default.
- W4313333071 hasConcept C153180895 @default.
- W4313333071 hasConcept C154945302 @default.
- W4313333071 hasConcept C185798385 @default.
- W4313333071 hasConcept C41008148 @default.
- W4313333071 hasConcept C50644808 @default.
- W4313333071 hasConcept C52622490 @default.
- W4313333071 hasConcept C555745239 @default.
- W4313333071 hasConcept C81363708 @default.
- W4313333071 hasConcept C8642999 @default.
- W4313333071 hasConcept C95623464 @default.